Jacobians of Sobolev homeomorphisms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-05

AUTHORS

Stanislav Hencl, Jan Malý

ABSTRACT

Let be a domain. We show that each homeomorphism f in the Sobolev space satisfies either Jf ≥ 0 a.e or Jf ≤ 0 a.e. if n = 2 or n = 3. For n > 3 we prove the same conclusion under the stronger assumption that for some s > [n/2] (or in the setting of Lorentz spaces). More... »

PAGES

233-242

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00526-009-0284-8

DOI

http://dx.doi.org/10.1007/s00526-009-0284-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030660972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Charles University", 
          "id": "https://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Mathematical Analysis, Charles University, Sokolovsk\u00e1 83, 186 00, Prague 8, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hencl", 
        "givenName": "Stanislav", 
        "id": "sg:person.014360045525.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360045525.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jan Evangelista Purkyn\u011b University in \u00dast\u00ed nad Labem", 
          "id": "https://www.grid.ac/institutes/grid.424917.d", 
          "name": [
            "Department of Mathematical Analysis, Charles University, Sokolovsk\u00e1 83, 186 00, Prague 8, Czech Republic", 
            "Department of Mathematics, J. E. Purkyn\u011b University, \u010cesk\u00e9 ml\u00e1de\u017ee 8, 400 96, \u00dast\u00ed nad Labem, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.016026347345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s005260100091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020016059", 
          "https://doi.org/10.1007/s005260100091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-007-0056-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022191602", 
          "https://doi.org/10.1007/s00205-007-0056-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-007-0056-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022191602", 
          "https://doi.org/10.1007/s00205-007-0056-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1031617457", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85989-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031617457", 
          "https://doi.org/10.1007/978-3-642-85989-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85989-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031617457", 
          "https://doi.org/10.1007/978-3-642-85989-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-78201-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838454", 
          "https://doi.org/10.1007/978-3-642-78201-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-78201-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838454", 
          "https://doi.org/10.1007/978-3-642-78201-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002290050197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049664804", 
          "https://doi.org/10.1007/s002290050197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-03-07335-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052955034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm149-2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072184216"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "Let be a domain. We show that each homeomorphism f in the Sobolev space satisfies either Jf \u2265 0 a.e or Jf \u2264 0 a.e. if n = 2 or n = 3. For n > 3 we prove the same conclusion under the stronger assumption that for some s > [n/2] (or in the setting of Lorentz spaces).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00526-009-0284-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043284", 
        "issn": [
          "0944-2669", 
          "1432-0835"
        ], 
        "name": "Calculus of Variations and Partial Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Jacobians of Sobolev homeomorphisms", 
    "pagination": "233-242", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "92108a13736e027540cc1abfbef1def6c4a52924e72ce8b33432de1d94860065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00526-009-0284-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030660972"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00526-009-0284-8", 
      "https://app.dimensions.ai/details/publication/pub.1030660972"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00526-009-0284-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-009-0284-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-009-0284-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-009-0284-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-009-0284-8'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00526-009-0284-8 schema:author Neec52190c83b4e3695f90b79cf1e2bf9
2 schema:citation sg:pub.10.1007/978-3-642-78201-5
3 sg:pub.10.1007/978-3-642-85989-2
4 sg:pub.10.1007/s00205-007-0056-6
5 sg:pub.10.1007/s002290050197
6 sg:pub.10.1007/s005260100091
7 https://app.dimensions.ai/details/publication/pub.1031617457
8 https://doi.org/10.1090/s0002-9939-03-07335-0
9 https://doi.org/10.4064/sm149-2-4
10 schema:datePublished 2010-05
11 schema:datePublishedReg 2010-05-01
12 schema:description Let be a domain. We show that each homeomorphism f in the Sobolev space satisfies either Jf ≥ 0 a.e or Jf ≤ 0 a.e. if n = 2 or n = 3. For n > 3 we prove the same conclusion under the stronger assumption that for some s > [n/2] (or in the setting of Lorentz spaces).
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N51089b34623347b08abfdde1790fd5a0
17 N7c852e8844214080a7784e98f3388137
18 sg:journal.1043284
19 schema:name Jacobians of Sobolev homeomorphisms
20 schema:pagination 233-242
21 schema:productId N9b96f930e25d4e7c99a1a2dd982ac190
22 Nd46ad0ff9e814ed5991f18934b73b454
23 Ndd0be237fe1d46f19707855d65d4c5a5
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030660972
25 https://doi.org/10.1007/s00526-009-0284-8
26 schema:sdDatePublished 2019-04-11T14:32
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N08478580fe7d489293c04a89e194ace5
29 schema:url http://link.springer.com/10.1007%2Fs00526-009-0284-8
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N08478580fe7d489293c04a89e194ace5 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N21a7059efd5448eba2dfabdcfa910734 rdf:first sg:person.016026347345.35
36 rdf:rest rdf:nil
37 N51089b34623347b08abfdde1790fd5a0 schema:issueNumber 1-2
38 rdf:type schema:PublicationIssue
39 N7c852e8844214080a7784e98f3388137 schema:volumeNumber 38
40 rdf:type schema:PublicationVolume
41 N9b96f930e25d4e7c99a1a2dd982ac190 schema:name dimensions_id
42 schema:value pub.1030660972
43 rdf:type schema:PropertyValue
44 Nd46ad0ff9e814ed5991f18934b73b454 schema:name readcube_id
45 schema:value 92108a13736e027540cc1abfbef1def6c4a52924e72ce8b33432de1d94860065
46 rdf:type schema:PropertyValue
47 Ndd0be237fe1d46f19707855d65d4c5a5 schema:name doi
48 schema:value 10.1007/s00526-009-0284-8
49 rdf:type schema:PropertyValue
50 Neec52190c83b4e3695f90b79cf1e2bf9 rdf:first sg:person.014360045525.25
51 rdf:rest N21a7059efd5448eba2dfabdcfa910734
52 sg:journal.1043284 schema:issn 0944-2669
53 1432-0835
54 schema:name Calculus of Variations and Partial Differential Equations
55 rdf:type schema:Periodical
56 sg:person.014360045525.25 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
57 schema:familyName Hencl
58 schema:givenName Stanislav
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360045525.25
60 rdf:type schema:Person
61 sg:person.016026347345.35 schema:affiliation https://www.grid.ac/institutes/grid.424917.d
62 schema:familyName Malý
63 schema:givenName Jan
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35
65 rdf:type schema:Person
66 sg:pub.10.1007/978-3-642-78201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032838454
67 https://doi.org/10.1007/978-3-642-78201-5
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/978-3-642-85989-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031617457
70 https://doi.org/10.1007/978-3-642-85989-2
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/s00205-007-0056-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022191602
73 https://doi.org/10.1007/s00205-007-0056-6
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/s002290050197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049664804
76 https://doi.org/10.1007/s002290050197
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/s005260100091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020016059
79 https://doi.org/10.1007/s005260100091
80 rdf:type schema:CreativeWork
81 https://app.dimensions.ai/details/publication/pub.1031617457 schema:CreativeWork
82 https://doi.org/10.1090/s0002-9939-03-07335-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052955034
83 rdf:type schema:CreativeWork
84 https://doi.org/10.4064/sm149-2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072184216
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.424917.d schema:alternateName Jan Evangelista Purkyně University in Ústí nad Labem
87 schema:name Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 00, Prague 8, Czech Republic
88 Department of Mathematics, J. E. Purkyně University, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic
89 rdf:type schema:Organization
90 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
91 schema:name Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 00, Prague 8, Czech Republic
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...