A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

P. Cannarsa, P. Cardaliaguet, G. Crasta, E. Giorgieri

ABSTRACT

The system of partial differential equations arises in the analysis of mathematical models for sandpile growth and in the context of the Monge–Kantorovich optimal mass transport theory. A representation formula for the solutions of a related boundary value problem is here obtained, extending the previous two-dimensional result of the first two authors to arbitrary space dimension. An application to the minimization of integral functionals of the form with f≥ 0, and h≥ 0 possibly non-convex, is also included. More... »

PAGES

431-457

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00526-005-0328-7

DOI

http://dx.doi.org/10.1007/s00526-005-0328-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021573770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "P.", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Western Brittany", 
          "id": "https://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "UFR des Sciences et Techniques, Universit\u00e9 de Bretagne Occidentale, 6 Av. Le Gorgeu, BP 809, 29285, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cardaliaguet", 
        "givenName": "P.", 
        "id": "sg:person.012147216327.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147216327.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma La Sapienza, P.le Aldo Moro 2, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crasta", 
        "givenName": "G.", 
        "id": "sg:person.013223226017.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013223226017.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgieri", 
        "givenName": "E.", 
        "id": "sg:person.010010020647.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010010020647.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-00-02564-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000466855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00004605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001742682", 
          "https://doi.org/10.1007/pl00004605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100350050029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003376816", 
          "https://doi.org/10.1007/s100350050029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b138356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007174052", 
          "https://doi.org/10.1007/b138356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007174052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1959-0110078-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007367944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007652222", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007652222", 
          "https://doi.org/10.1007/978-0-8176-4755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007652222", 
          "https://doi.org/10.1007/978-0-8176-4755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1011077577", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61798-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011077577", 
          "https://doi.org/10.1007/978-3-642-61798-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61798-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011077577", 
          "https://doi.org/10.1007/978-3-642-61798-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0294-1449(97)80140-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022428008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39189-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378912", 
          "https://doi.org/10.1007/978-3-540-39189-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.20051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040872345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002050050142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043419529", 
          "https://doi.org/10.1007/s002050050142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1997.3243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046575476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792500002321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053763497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500026913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054894374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/cocv:2003003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056952387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1996138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056974370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511526282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708163"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "The system of partial differential equations arises in the analysis of mathematical models for sandpile growth and in the context of the Monge\u2013Kantorovich optimal mass transport theory. A representation formula for the solutions of a related boundary value problem is here obtained, extending the previous two-dimensional result of the first two authors to arbitrary space dimension. An application to the minimization of integral functionals of the form with f\u2265 0, and h\u2265 0 possibly non-convex, is also included.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00526-005-0328-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043284", 
        "issn": [
          "0944-2669", 
          "1432-0835"
        ], 
        "name": "Calculus of Variations and Partial Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications", 
    "pagination": "431-457", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "66c9d6dc5d60af1bdca7912e33f67f569bfbcf4086987f47129d7ab790e43191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00526-005-0328-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021573770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00526-005-0328-7", 
      "https://app.dimensions.ai/details/publication/pub.1021573770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118335_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00526-005-0328-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-005-0328-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-005-0328-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-005-0328-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-005-0328-7'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00526-005-0328-7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ncb61513507534032aa2f7703a416b1a5
4 schema:citation sg:pub.10.1007/978-0-8176-4755-1
5 sg:pub.10.1007/978-3-540-39189-0_1
6 sg:pub.10.1007/978-3-642-61798-0
7 sg:pub.10.1007/b138356
8 sg:pub.10.1007/pl00004605
9 sg:pub.10.1007/s002050050142
10 sg:pub.10.1007/s100350050029
11 https://app.dimensions.ai/details/publication/pub.1007174052
12 https://app.dimensions.ai/details/publication/pub.1007652222
13 https://app.dimensions.ai/details/publication/pub.1011077577
14 https://doi.org/10.1002/cpa.20051
15 https://doi.org/10.1006/jdeq.1997.3243
16 https://doi.org/10.1016/s0294-1449(97)80140-0
17 https://doi.org/10.1017/cbo9780511526282
18 https://doi.org/10.1017/s0308210500026913
19 https://doi.org/10.1017/s0956792500002321
20 https://doi.org/10.1051/cocv:2003003
21 https://doi.org/10.1051/jp1:1996138
22 https://doi.org/10.1090/memo/0653
23 https://doi.org/10.1090/s0002-9947-00-02564-2
24 https://doi.org/10.1090/s0002-9947-1959-0110078-1
25 https://doi.org/10.4171/jems/16
26 schema:datePublished 2005-12
27 schema:datePublishedReg 2005-12-01
28 schema:description The system of partial differential equations arises in the analysis of mathematical models for sandpile growth and in the context of the Monge–Kantorovich optimal mass transport theory. A representation formula for the solutions of a related boundary value problem is here obtained, extending the previous two-dimensional result of the first two authors to arbitrary space dimension. An application to the minimization of integral functionals of the form with f≥ 0, and h≥ 0 possibly non-convex, is also included.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N228940fd85924e85a3da1702d9a30c3f
33 N5141f9b166c841b497651ba438579d22
34 sg:journal.1043284
35 schema:name A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications
36 schema:pagination 431-457
37 schema:productId Na9c397ce654d49239d55c66a42b6adf1
38 Nbcc2b2f278df4717bba436da8c4d7e7a
39 Ncced6788cfa849f4930bc151f96a7b29
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021573770
41 https://doi.org/10.1007/s00526-005-0328-7
42 schema:sdDatePublished 2019-04-11T12:06
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ndc1fa2eb9db14b0f831dbaefa757844a
45 schema:url http://link.springer.com/10.1007%2Fs00526-005-0328-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N228940fd85924e85a3da1702d9a30c3f schema:issueNumber 4
50 rdf:type schema:PublicationIssue
51 N4e050cf0d13d46caaa3abe110686b913 rdf:first sg:person.013223226017.28
52 rdf:rest Ncf4d4d6a4b7f4992ad80a728a2f2fd94
53 N5141f9b166c841b497651ba438579d22 schema:volumeNumber 24
54 rdf:type schema:PublicationVolume
55 Na75c6b1e7239469991061e5cf29380ab rdf:first sg:person.012147216327.96
56 rdf:rest N4e050cf0d13d46caaa3abe110686b913
57 Na9c397ce654d49239d55c66a42b6adf1 schema:name readcube_id
58 schema:value 66c9d6dc5d60af1bdca7912e33f67f569bfbcf4086987f47129d7ab790e43191
59 rdf:type schema:PropertyValue
60 Nbcc2b2f278df4717bba436da8c4d7e7a schema:name doi
61 schema:value 10.1007/s00526-005-0328-7
62 rdf:type schema:PropertyValue
63 Ncb61513507534032aa2f7703a416b1a5 rdf:first sg:person.014257010655.09
64 rdf:rest Na75c6b1e7239469991061e5cf29380ab
65 Ncced6788cfa849f4930bc151f96a7b29 schema:name dimensions_id
66 schema:value pub.1021573770
67 rdf:type schema:PropertyValue
68 Ncf4d4d6a4b7f4992ad80a728a2f2fd94 rdf:first sg:person.010010020647.09
69 rdf:rest rdf:nil
70 Ndc1fa2eb9db14b0f831dbaefa757844a schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
76 schema:name Applied Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1043284 schema:issn 0944-2669
79 1432-0835
80 schema:name Calculus of Variations and Partial Differential Equations
81 rdf:type schema:Periodical
82 sg:person.010010020647.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
83 schema:familyName Giorgieri
84 schema:givenName E.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010010020647.09
86 rdf:type schema:Person
87 sg:person.012147216327.96 schema:affiliation https://www.grid.ac/institutes/grid.6289.5
88 schema:familyName Cardaliaguet
89 schema:givenName P.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147216327.96
91 rdf:type schema:Person
92 sg:person.013223226017.28 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
93 schema:familyName Crasta
94 schema:givenName G.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013223226017.28
96 rdf:type schema:Person
97 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
98 schema:familyName Cannarsa
99 schema:givenName P.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
101 rdf:type schema:Person
102 sg:pub.10.1007/978-0-8176-4755-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007652222
103 https://doi.org/10.1007/978-0-8176-4755-1
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-540-39189-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378912
106 https://doi.org/10.1007/978-3-540-39189-0_1
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-642-61798-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077577
109 https://doi.org/10.1007/978-3-642-61798-0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/b138356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174052
112 https://doi.org/10.1007/b138356
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/pl00004605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001742682
115 https://doi.org/10.1007/pl00004605
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s002050050142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043419529
118 https://doi.org/10.1007/s002050050142
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s100350050029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376816
121 https://doi.org/10.1007/s100350050029
122 rdf:type schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1007174052 schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1007652222 schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1011077577 schema:CreativeWork
126 https://doi.org/10.1002/cpa.20051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040872345
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1006/jdeq.1997.3243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046575476
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0294-1449(97)80140-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022428008
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/cbo9780511526282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708163
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/s0308210500026913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054894374
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s0956792500002321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053763497
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1051/cocv:2003003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056952387
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1051/jp1:1996138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056974370
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1090/memo/0653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343702
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1090/s0002-9947-00-02564-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000466855
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1090/s0002-9947-1959-0110078-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367944
147 rdf:type schema:CreativeWork
148 https://doi.org/10.4171/jems/16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317737
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.6289.5 schema:alternateName University of Western Brittany
151 schema:name UFR des Sciences et Techniques, Université de Bretagne Occidentale, 6 Av. Le Gorgeu, BP 809, 29285, Brest, France
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
154 schema:name Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
157 schema:name Dipartimento di Matematica, Università di Roma La Sapienza, P.le Aldo Moro 2, 00185, Roma, Italy
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...