Ontology type: schema:ScholarlyArticle
2001-04
AUTHORSSusan W. Palocsay, Scott P. Stevens, Robert G. Brookshire
ABSTRACTRecent interest in neural networks by researchers across a wide spectrum of disciplines has provided convincing evidence of their ability to address classification problems. In this article, we consider the issue of evaluating the predictive capability of neural networks when the output values are to be treated as probabilities. We propose the use of a variant of a chi-square statistic, based on the Hosmer–Lemeshow statistic from logistic regression, to measure the goodness-of-fit of neural network models for two-group membership problems. Through experimentation with a large real-world database, we demonstrate the application of this statistic, and examine the effects of varying the number of nodes in the hidden layer on its value. Our empirical results suggest that this statistic can be very useful in identifying significant differences in the probability estimation accuracy of neural network models. More... »
PAGES48-55
http://scigraph.springernature.com/pub.10.1007/s005210170017
DOIhttp://dx.doi.org/10.1007/s005210170017
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018731983
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US",
"id": "http://www.grid.ac/institutes/grid.258041.a",
"name": [
"Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US"
],
"type": "Organization"
},
"familyName": "Palocsay",
"givenName": "Susan W.",
"id": "sg:person.012512771025.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512771025.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US",
"id": "http://www.grid.ac/institutes/grid.258041.a",
"name": [
"Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US"
],
"type": "Organization"
},
"familyName": "Stevens",
"givenName": "Scott P.",
"id": "sg:person.012120605565.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120605565.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US",
"id": "http://www.grid.ac/institutes/grid.258041.a",
"name": [
"Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US"
],
"type": "Organization"
},
"familyName": "Brookshire",
"givenName": "Robert G.",
"id": "sg:person.0614606364.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614606364.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01655906",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000216607",
"https://doi.org/10.1007/bf01655906"
],
"type": "CreativeWork"
}
],
"datePublished": "2001-04",
"datePublishedReg": "2001-04-01",
"description": "Recent interest in neural networks by researchers across a wide spectrum of disciplines has provided convincing evidence of their ability to address classification problems. In this article, we consider the issue of evaluating the predictive capability of neural networks when the output values are to be treated as probabilities. We propose the use of a variant of a chi-square statistic, based on the Hosmer\u2013Lemeshow statistic from logistic regression, to measure the goodness-of-fit of neural network models for two-group membership problems. Through experimentation with a large real-world database, we demonstrate the application of this statistic, and examine the effects of varying the number of nodes in the hidden layer on its value. Our empirical results suggest that this statistic can be very useful in identifying significant differences in the probability estimation accuracy of neural network models.",
"genre": "article",
"id": "sg:pub.10.1007/s005210170017",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1104357",
"issn": [
"0941-0643",
"1433-3058"
],
"name": "Neural Computing and Applications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"neural network model",
"neural network",
"large real-world databases",
"network model",
"real-world databases",
"number of nodes",
"classification problem",
"hidden layer",
"empirical evaluation",
"probability estimation",
"estimation accuracy",
"network",
"statistics",
"membership problem",
"output values",
"predictive capability",
"chi-square statistics",
"empirical results",
"problem",
"nodes",
"model",
"recent interest",
"estimation",
"goodness",
"capability",
"experimentation",
"database",
"accuracy",
"Hosmer-Lemeshow statistic",
"probability",
"applications",
"fit",
"researchers",
"issues",
"wide spectrum",
"disciplines",
"values",
"spectra",
"number",
"interest",
"evaluation",
"layer",
"use",
"regression",
"results",
"evidence",
"convincing evidence",
"variants",
"ability",
"article",
"logistic regression",
"effect",
"differences",
"significant differences"
],
"name": "An Empirical Evaluation of Probability Estimation with Neural Networks",
"pagination": "48-55",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018731983"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s005210170017"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s005210170017",
"https://app.dimensions.ai/details/publication/pub.1018731983"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_331.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s005210170017"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s005210170017'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s005210170017'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s005210170017'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s005210170017'
This table displays all metadata directly associated to this object as RDF triples.
130 TRIPLES
22 PREDICATES
80 URIs
71 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s005210170017 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Ncf975a5802604a0a86768670054bb40a |
4 | ″ | schema:citation | sg:pub.10.1007/bf01655906 |
5 | ″ | schema:datePublished | 2001-04 |
6 | ″ | schema:datePublishedReg | 2001-04-01 |
7 | ″ | schema:description | Recent interest in neural networks by researchers across a wide spectrum of disciplines has provided convincing evidence of their ability to address classification problems. In this article, we consider the issue of evaluating the predictive capability of neural networks when the output values are to be treated as probabilities. We propose the use of a variant of a chi-square statistic, based on the Hosmer–Lemeshow statistic from logistic regression, to measure the goodness-of-fit of neural network models for two-group membership problems. Through experimentation with a large real-world database, we demonstrate the application of this statistic, and examine the effects of varying the number of nodes in the hidden layer on its value. Our empirical results suggest that this statistic can be very useful in identifying significant differences in the probability estimation accuracy of neural network models. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N0c6d2fe56f8e419c977a035a31c5f0ec |
12 | ″ | ″ | N3c28776588534d1f89b60fcb26ed3675 |
13 | ″ | ″ | sg:journal.1104357 |
14 | ″ | schema:keywords | Hosmer-Lemeshow statistic |
15 | ″ | ″ | ability |
16 | ″ | ″ | accuracy |
17 | ″ | ″ | applications |
18 | ″ | ″ | article |
19 | ″ | ″ | capability |
20 | ″ | ″ | chi-square statistics |
21 | ″ | ″ | classification problem |
22 | ″ | ″ | convincing evidence |
23 | ″ | ″ | database |
24 | ″ | ″ | differences |
25 | ″ | ″ | disciplines |
26 | ″ | ″ | effect |
27 | ″ | ″ | empirical evaluation |
28 | ″ | ″ | empirical results |
29 | ″ | ″ | estimation |
30 | ″ | ″ | estimation accuracy |
31 | ″ | ″ | evaluation |
32 | ″ | ″ | evidence |
33 | ″ | ″ | experimentation |
34 | ″ | ″ | fit |
35 | ″ | ″ | goodness |
36 | ″ | ″ | hidden layer |
37 | ″ | ″ | interest |
38 | ″ | ″ | issues |
39 | ″ | ″ | large real-world databases |
40 | ″ | ″ | layer |
41 | ″ | ″ | logistic regression |
42 | ″ | ″ | membership problem |
43 | ″ | ″ | model |
44 | ″ | ″ | network |
45 | ″ | ″ | network model |
46 | ″ | ″ | neural network |
47 | ″ | ″ | neural network model |
48 | ″ | ″ | nodes |
49 | ″ | ″ | number |
50 | ″ | ″ | number of nodes |
51 | ″ | ″ | output values |
52 | ″ | ″ | predictive capability |
53 | ″ | ″ | probability |
54 | ″ | ″ | probability estimation |
55 | ″ | ″ | problem |
56 | ″ | ″ | real-world databases |
57 | ″ | ″ | recent interest |
58 | ″ | ″ | regression |
59 | ″ | ″ | researchers |
60 | ″ | ″ | results |
61 | ″ | ″ | significant differences |
62 | ″ | ″ | spectra |
63 | ″ | ″ | statistics |
64 | ″ | ″ | use |
65 | ″ | ″ | values |
66 | ″ | ″ | variants |
67 | ″ | ″ | wide spectrum |
68 | ″ | schema:name | An Empirical Evaluation of Probability Estimation with Neural Networks |
69 | ″ | schema:pagination | 48-55 |
70 | ″ | schema:productId | N34256090086d4e3c9e1563efa208e54e |
71 | ″ | ″ | N3af4056a2d3a4ddba601a14e2fa7dc42 |
72 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018731983 |
73 | ″ | ″ | https://doi.org/10.1007/s005210170017 |
74 | ″ | schema:sdDatePublished | 2022-05-10T09:47 |
75 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
76 | ″ | schema:sdPublisher | N12d3cfa2704b47b3ac85086adf28e1b4 |
77 | ″ | schema:url | https://doi.org/10.1007/s005210170017 |
78 | ″ | sgo:license | sg:explorer/license/ |
79 | ″ | sgo:sdDataset | articles |
80 | ″ | rdf:type | schema:ScholarlyArticle |
81 | N0c6d2fe56f8e419c977a035a31c5f0ec | schema:issueNumber | 1 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | N12d3cfa2704b47b3ac85086adf28e1b4 | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | N34256090086d4e3c9e1563efa208e54e | schema:name | doi |
86 | ″ | schema:value | 10.1007/s005210170017 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N3af4056a2d3a4ddba601a14e2fa7dc42 | schema:name | dimensions_id |
89 | ″ | schema:value | pub.1018731983 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N3c28776588534d1f89b60fcb26ed3675 | schema:volumeNumber | 10 |
92 | ″ | rdf:type | schema:PublicationVolume |
93 | N63c0e10fcfc24092b8812f07532a5770 | rdf:first | sg:person.0614606364.33 |
94 | ″ | rdf:rest | rdf:nil |
95 | Nb78a1daec40645708bb8dd379c3b12b4 | rdf:first | sg:person.012120605565.18 |
96 | ″ | rdf:rest | N63c0e10fcfc24092b8812f07532a5770 |
97 | Ncf975a5802604a0a86768670054bb40a | rdf:first | sg:person.012512771025.25 |
98 | ″ | rdf:rest | Nb78a1daec40645708bb8dd379c3b12b4 |
99 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Information and Computing Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Artificial Intelligence and Image Processing |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | sg:journal.1104357 | schema:issn | 0941-0643 |
106 | ″ | ″ | 1433-3058 |
107 | ″ | schema:name | Neural Computing and Applications |
108 | ″ | schema:publisher | Springer Nature |
109 | ″ | rdf:type | schema:Periodical |
110 | sg:person.012120605565.18 | schema:affiliation | grid-institutes:grid.258041.a |
111 | ″ | schema:familyName | Stevens |
112 | ″ | schema:givenName | Scott P. |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120605565.18 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.012512771025.25 | schema:affiliation | grid-institutes:grid.258041.a |
116 | ″ | schema:familyName | Palocsay |
117 | ″ | schema:givenName | Susan W. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512771025.25 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.0614606364.33 | schema:affiliation | grid-institutes:grid.258041.a |
121 | ″ | schema:familyName | Brookshire |
122 | ″ | schema:givenName | Robert G. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614606364.33 |
124 | ″ | rdf:type | schema:Person |
125 | sg:pub.10.1007/bf01655906 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000216607 |
126 | ″ | ″ | https://doi.org/10.1007/bf01655906 |
127 | ″ | rdf:type | schema:CreativeWork |
128 | grid-institutes:grid.258041.a | schema:alternateName | Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US |
129 | ″ | schema:name | Computer Information Systems/Operations Management Program, James Madison University, Harrisonburg, VA, USA, US |
130 | ″ | rdf:type | schema:Organization |