Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-11

AUTHORS

Sanmeet Kaur, Maninder Singh

ABSTRACT

N/A

References to SciGraph publications

  • 2009. Automatic Generation of String Signatures for Malware Detection in RECENT ADVANCES IN INTRUSION DETECTION
  • 2004. Anomalous Payload-Based Network Intrusion Detection in RECENT ADVANCES IN INTRUSION DETECTION
  • 1995-09. On-line construction of suffix trees in ALGORITHMICA
  • 2012-09. Intrusion detection using reduced-size RNN based on feature grouping in NEURAL COMPUTING AND APPLICATIONS
  • 2010-05. Auto-Sign: an automatic signature generator for high-speed malware filtering devices in JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES
  • Journal

    TITLE

    Neural Computing and Applications

    ISSUE

    N/A

    VOLUME

    N/A

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-019-04187-9

    DOI

    http://dx.doi.org/10.1007/s00521-019-04187-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113382457


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "familyName": "Kaur", 
            "givenName": "Sanmeet", 
            "type": "Person"
          }, 
          {
            "familyName": "Singh", 
            "givenName": "Maninder", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00521-010-0487-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009941426", 
              "https://doi.org/10.1007/s00521-010-0487-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-010-0487-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009941426", 
              "https://doi.org/10.1007/s00521-010-0487-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11416-009-0119-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021774262", 
              "https://doi.org/10.1007/s11416-009-0119-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024230952", 
              "https://doi.org/10.1007/bf01206331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024230952", 
              "https://doi.org/10.1007/bf01206331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04342-0_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024703667", 
              "https://doi.org/10.1007/978-3-642-04342-0_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1352592.1352622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035759360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1095810.1095824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042131150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnca.2011.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043723759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/972374.972384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044154785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30143-1_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046166910", 
              "https://doi.org/10.1007/978-3-540-30143-1_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30143-1_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046166910", 
              "https://doi.org/10.1007/978-3-540-30143-1_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s16101701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048452799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msp.2013.51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061424071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tdsc.2016.2609907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061585643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2010.2068544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15837/ijccc.2017.5.2972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091663043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2017.2762418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092218597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wincom.2016.7777224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093512738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/milcom.2008.4753178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093530477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sp.2005.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093995929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ictc.2016.7763403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094565034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/malware.2009.5403022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094653479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2017.2780250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099684449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2018.2803446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100905059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2017.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101908810"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-11", 
        "datePublishedReg": "2019-04-11", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00521-019-04187-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "type": "Periodical"
          }
        ], 
        "name": "Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113382457"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-019-04187-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-019-04187-9", 
          "https://app.dimensions.ai/details/publication/pub.1113382457"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-16T06:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106834_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00521-019-04187-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04187-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04187-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04187-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04187-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      18 PREDICATES      42 URIs      13 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-019-04187-9 schema:author Ndc914e4144e34b7c86e0ad57e3dfb2ce
    2 schema:citation sg:pub.10.1007/978-3-540-30143-1_11
    3 sg:pub.10.1007/978-3-642-04342-0_6
    4 sg:pub.10.1007/bf01206331
    5 sg:pub.10.1007/s00521-010-0487-0
    6 sg:pub.10.1007/s11416-009-0119-3
    7 https://doi.org/10.1016/j.jnca.2011.03.017
    8 https://doi.org/10.1109/access.2017.2762418
    9 https://doi.org/10.1109/access.2017.2780250
    10 https://doi.org/10.1109/access.2018.2803446
    11 https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2017.106
    12 https://doi.org/10.1109/ictc.2016.7763403
    13 https://doi.org/10.1109/malware.2009.5403022
    14 https://doi.org/10.1109/milcom.2008.4753178
    15 https://doi.org/10.1109/msp.2013.51
    16 https://doi.org/10.1109/sp.2005.15
    17 https://doi.org/10.1109/tdsc.2016.2609907
    18 https://doi.org/10.1109/tsmcc.2010.2068544
    19 https://doi.org/10.1109/wincom.2016.7777224
    20 https://doi.org/10.1145/1095810.1095824
    21 https://doi.org/10.1145/1352592.1352622
    22 https://doi.org/10.1145/972374.972384
    23 https://doi.org/10.15837/ijccc.2017.5.2972
    24 https://doi.org/10.3390/s16101701
    25 schema:datePublished 2019-04-11
    26 schema:datePublishedReg 2019-04-11
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf sg:journal.1104357
    31 schema:name Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks
    32 schema:productId N6beaba7ada2945d3aeefaf70a30f42e3
    33 Nbaa038ec2f2344a7b2d917dfa1a353fd
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113382457
    35 https://doi.org/10.1007/s00521-019-04187-9
    36 schema:sdDatePublished 2019-04-16T06:25
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Ne897bf264c04486a8daf79ab5fbc4856
    39 schema:url http://link.springer.com/10.1007/s00521-019-04187-9
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N6beaba7ada2945d3aeefaf70a30f42e3 schema:name dimensions_id
    44 schema:value pub.1113382457
    45 rdf:type schema:PropertyValue
    46 N786fc4227a594090ad287c711c2555c1 rdf:first Nc0ebe5edc18a4bb796052303b522d603
    47 rdf:rest rdf:nil
    48 Nbaa038ec2f2344a7b2d917dfa1a353fd schema:name doi
    49 schema:value 10.1007/s00521-019-04187-9
    50 rdf:type schema:PropertyValue
    51 Nc0ebe5edc18a4bb796052303b522d603 schema:familyName Singh
    52 schema:givenName Maninder
    53 rdf:type schema:Person
    54 Ndc914e4144e34b7c86e0ad57e3dfb2ce rdf:first Nee6447e37cde4b399768312ab59e6638
    55 rdf:rest N786fc4227a594090ad287c711c2555c1
    56 Ne897bf264c04486a8daf79ab5fbc4856 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nee6447e37cde4b399768312ab59e6638 schema:familyName Kaur
    59 schema:givenName Sanmeet
    60 rdf:type schema:Person
    61 sg:journal.1104357 schema:issn 0941-0643
    62 1433-3058
    63 schema:name Neural Computing and Applications
    64 rdf:type schema:Periodical
    65 sg:pub.10.1007/978-3-540-30143-1_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046166910
    66 https://doi.org/10.1007/978-3-540-30143-1_11
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1007/978-3-642-04342-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024703667
    69 https://doi.org/10.1007/978-3-642-04342-0_6
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/bf01206331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024230952
    72 https://doi.org/10.1007/bf01206331
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/s00521-010-0487-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009941426
    75 https://doi.org/10.1007/s00521-010-0487-0
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/s11416-009-0119-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021774262
    78 https://doi.org/10.1007/s11416-009-0119-3
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/j.jnca.2011.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043723759
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1109/access.2017.2762418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092218597
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1109/access.2017.2780250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099684449
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1109/access.2018.2803446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100905059
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2017.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101908810
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1109/ictc.2016.7763403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094565034
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1109/malware.2009.5403022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094653479
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1109/milcom.2008.4753178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093530477
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1109/msp.2013.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061424071
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1109/sp.2005.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093995929
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1109/tdsc.2016.2609907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061585643
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/tsmcc.2010.2068544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798270
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/wincom.2016.7777224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093512738
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1145/1095810.1095824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042131150
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1145/1352592.1352622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035759360
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1145/972374.972384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044154785
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.15837/ijccc.2017.5.2972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091663043
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.3390/s16101701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048452799
    115 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...