Intelligent schemes for fault classification in mutually coupled series-compensated parallel transmission lines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-06

AUTHORS

Aleena Swetapadma, Anamika Yadav, Almoataz Y. Abdelaziz

ABSTRACT

N/A

Journal

TITLE

Neural Computing and Applications

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x

DOI

http://dx.doi.org/10.1007/s00521-019-04185-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113283341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Swetapadma", 
        "givenName": "Aleena", 
        "type": "Person"
      }, 
      {
        "familyName": "Yadav", 
        "givenName": "Anamika", 
        "type": "Person"
      }, 
      {
        "familyName": "Abdelaziz", 
        "givenName": "Almoataz Y.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijepes.2009.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003062773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2012.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003083814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15325008.2015.1091862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010893599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2004.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013521285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2004.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013521285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07313569708955759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013592997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2016.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027509990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2014.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031630918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2004.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038748485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15325008.2013.763312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044355183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051489399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2008.0316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056826511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2008.0316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056826511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2008.0316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056826511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2013.0239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056827171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2013.0239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056827171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-gtd:19960681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056852654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2003.822535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061771316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2006.876695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061772142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2006.876981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061772152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2010.2053222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061773464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2016.2598553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061775446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-169248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084430470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpeices.2016.7853543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095080306"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-06", 
    "datePublishedReg": "2019-04-06", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-019-04185-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Intelligent schemes for fault classification in mutually coupled series-compensated parallel transmission lines", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-019-04185-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113283341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-019-04185-x", 
      "https://app.dimensions.ai/details/publication/pub.1113283341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117103_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00521-019-04185-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      18 PREDICATES      39 URIs      13 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-019-04185-x schema:author N86f67363d48c489c9e3bda9d8c40e35e
2 schema:citation https://doi.org/10.1016/j.engappai.2011.03.003
3 https://doi.org/10.1016/j.epsr.2004.10.016
4 https://doi.org/10.1016/j.ijepes.2004.05.005
5 https://doi.org/10.1016/j.ijepes.2009.11.020
6 https://doi.org/10.1016/j.ijepes.2014.11.012
7 https://doi.org/10.1016/j.ijepes.2016.02.034
8 https://doi.org/10.1016/j.measurement.2012.07.014
9 https://doi.org/10.1049/iet-gtd.2008.0316
10 https://doi.org/10.1049/iet-gtd.2013.0239
11 https://doi.org/10.1049/ip-gtd:19960681
12 https://doi.org/10.1080/07313569708955759
13 https://doi.org/10.1080/15325008.2013.763312
14 https://doi.org/10.1080/15325008.2015.1091862
15 https://doi.org/10.1109/icpeices.2016.7853543
16 https://doi.org/10.1109/tpwrd.2003.822535
17 https://doi.org/10.1109/tpwrd.2006.876695
18 https://doi.org/10.1109/tpwrd.2006.876981
19 https://doi.org/10.1109/tpwrd.2010.2053222
20 https://doi.org/10.1109/tpwrd.2016.2598553
21 https://doi.org/10.3233/jifs-169248
22 schema:datePublished 2019-04-06
23 schema:datePublishedReg 2019-04-06
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf sg:journal.1104357
28 schema:name Intelligent schemes for fault classification in mutually coupled series-compensated parallel transmission lines
29 schema:productId Nddc8abe3d8334091ae159e428fe81069
30 Ne0c8971c2cdb4cd88826ed4460f7d32f
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113283341
32 https://doi.org/10.1007/s00521-019-04185-x
33 schema:sdDatePublished 2019-04-11T14:18
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N7e0a075b9fa24fa2a5729e803ff43720
36 schema:url http://link.springer.com/10.1007/s00521-019-04185-x
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N70a9c13f2953438597c06db70aaed8bf rdf:first Ne040752e36f6443ea7c4470fd8eb0f10
41 rdf:rest Nb9f8ed01139e40d88113c830c1d5b41e
42 N7e0a075b9fa24fa2a5729e803ff43720 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N862835507674453aaf1b588c947db1b9 schema:familyName Abdelaziz
45 schema:givenName Almoataz Y.
46 rdf:type schema:Person
47 N86f67363d48c489c9e3bda9d8c40e35e rdf:first N898fc2e528ba4f2d8d7324aca3f7354a
48 rdf:rest N70a9c13f2953438597c06db70aaed8bf
49 N898fc2e528ba4f2d8d7324aca3f7354a schema:familyName Swetapadma
50 schema:givenName Aleena
51 rdf:type schema:Person
52 Nb9f8ed01139e40d88113c830c1d5b41e rdf:first N862835507674453aaf1b588c947db1b9
53 rdf:rest rdf:nil
54 Nddc8abe3d8334091ae159e428fe81069 schema:name doi
55 schema:value 10.1007/s00521-019-04185-x
56 rdf:type schema:PropertyValue
57 Ne040752e36f6443ea7c4470fd8eb0f10 schema:familyName Yadav
58 schema:givenName Anamika
59 rdf:type schema:Person
60 Ne0c8971c2cdb4cd88826ed4460f7d32f schema:name dimensions_id
61 schema:value pub.1113283341
62 rdf:type schema:PropertyValue
63 sg:journal.1104357 schema:issn 0941-0643
64 1433-3058
65 schema:name Neural Computing and Applications
66 rdf:type schema:Periodical
67 https://doi.org/10.1016/j.engappai.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051489399
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1016/j.epsr.2004.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013521285
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/j.ijepes.2004.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038748485
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.ijepes.2009.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003062773
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/j.ijepes.2014.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031630918
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/j.ijepes.2016.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027509990
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/j.measurement.2012.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003083814
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1049/iet-gtd.2008.0316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056826511
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1049/iet-gtd.2013.0239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056827171
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1049/ip-gtd:19960681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056852654
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1080/07313569708955759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013592997
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1080/15325008.2013.763312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044355183
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1080/15325008.2015.1091862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010893599
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/icpeices.2016.7853543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095080306
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tpwrd.2003.822535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061771316
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tpwrd.2006.876695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061772142
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tpwrd.2006.876981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061772152
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tpwrd.2010.2053222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061773464
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tpwrd.2016.2598553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061775446
104 rdf:type schema:CreativeWork
105 https://doi.org/10.3233/jifs-169248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084430470
106 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...