Intelligent schemes for fault classification in mutually coupled series-compensated parallel transmission lines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-06

AUTHORS

Aleena Swetapadma, Anamika Yadav, Almoataz Y. Abdelaziz

ABSTRACT

N/A

Journal

TITLE

Neural Computing and Applications

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x

DOI

http://dx.doi.org/10.1007/s00521-019-04185-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113283341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Swetapadma", 
        "givenName": "Aleena", 
        "type": "Person"
      }, 
      {
        "familyName": "Yadav", 
        "givenName": "Anamika", 
        "type": "Person"
      }, 
      {
        "familyName": "Abdelaziz", 
        "givenName": "Almoataz Y.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijepes.2009.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003062773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2012.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003083814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15325008.2015.1091862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010893599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2004.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013521285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2004.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013521285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07313569708955759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013592997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2016.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027509990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2014.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031630918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2004.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038748485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15325008.2013.763312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044355183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051489399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2008.0316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056826511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2008.0316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056826511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2008.0316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056826511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2013.0239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056827171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-gtd.2013.0239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056827171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-gtd:19960681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056852654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2003.822535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061771316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2006.876695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061772142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2006.876981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061772152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2010.2053222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061773464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2016.2598553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061775446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-169248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084430470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpeices.2016.7853543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095080306"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-06", 
    "datePublishedReg": "2019-04-06", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-019-04185-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Intelligent schemes for fault classification in mutually coupled series-compensated parallel transmission lines", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-019-04185-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113283341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-019-04185-x", 
      "https://app.dimensions.ai/details/publication/pub.1113283341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117103_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00521-019-04185-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04185-x'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      18 PREDICATES      39 URIs      13 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-019-04185-x schema:author Nab99e4d462a34512b60aa343fbc6ff9e
2 schema:citation https://doi.org/10.1016/j.engappai.2011.03.003
3 https://doi.org/10.1016/j.epsr.2004.10.016
4 https://doi.org/10.1016/j.ijepes.2004.05.005
5 https://doi.org/10.1016/j.ijepes.2009.11.020
6 https://doi.org/10.1016/j.ijepes.2014.11.012
7 https://doi.org/10.1016/j.ijepes.2016.02.034
8 https://doi.org/10.1016/j.measurement.2012.07.014
9 https://doi.org/10.1049/iet-gtd.2008.0316
10 https://doi.org/10.1049/iet-gtd.2013.0239
11 https://doi.org/10.1049/ip-gtd:19960681
12 https://doi.org/10.1080/07313569708955759
13 https://doi.org/10.1080/15325008.2013.763312
14 https://doi.org/10.1080/15325008.2015.1091862
15 https://doi.org/10.1109/icpeices.2016.7853543
16 https://doi.org/10.1109/tpwrd.2003.822535
17 https://doi.org/10.1109/tpwrd.2006.876695
18 https://doi.org/10.1109/tpwrd.2006.876981
19 https://doi.org/10.1109/tpwrd.2010.2053222
20 https://doi.org/10.1109/tpwrd.2016.2598553
21 https://doi.org/10.3233/jifs-169248
22 schema:datePublished 2019-04-06
23 schema:datePublishedReg 2019-04-06
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf sg:journal.1104357
28 schema:name Intelligent schemes for fault classification in mutually coupled series-compensated parallel transmission lines
29 schema:productId N7deb10cd55a44df7a3f31e8ac2178359
30 Ndf496c14db1a4174b736dccdaea27987
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113283341
32 https://doi.org/10.1007/s00521-019-04185-x
33 schema:sdDatePublished 2019-04-11T14:18
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N8cbe74d8bad34c2da4c236c77459f1d0
36 schema:url http://link.springer.com/10.1007/s00521-019-04185-x
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N3c3e3e2023ff44bead12acc5e2b66521 rdf:first N3ed44137105b4d50bb115033970022bc
41 rdf:rest N70c0a68779f14eeaabbb64ab406575fa
42 N3ed44137105b4d50bb115033970022bc schema:familyName Yadav
43 schema:givenName Anamika
44 rdf:type schema:Person
45 N70c0a68779f14eeaabbb64ab406575fa rdf:first Ne7eaeac055094fa0b6a4630cfe081d04
46 rdf:rest rdf:nil
47 N7deb10cd55a44df7a3f31e8ac2178359 schema:name dimensions_id
48 schema:value pub.1113283341
49 rdf:type schema:PropertyValue
50 N8cbe74d8bad34c2da4c236c77459f1d0 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N9cb7cc8c47ec496a846aae758026236f schema:familyName Swetapadma
53 schema:givenName Aleena
54 rdf:type schema:Person
55 Nab99e4d462a34512b60aa343fbc6ff9e rdf:first N9cb7cc8c47ec496a846aae758026236f
56 rdf:rest N3c3e3e2023ff44bead12acc5e2b66521
57 Ndf496c14db1a4174b736dccdaea27987 schema:name doi
58 schema:value 10.1007/s00521-019-04185-x
59 rdf:type schema:PropertyValue
60 Ne7eaeac055094fa0b6a4630cfe081d04 schema:familyName Abdelaziz
61 schema:givenName Almoataz Y.
62 rdf:type schema:Person
63 sg:journal.1104357 schema:issn 0941-0643
64 1433-3058
65 schema:name Neural Computing and Applications
66 rdf:type schema:Periodical
67 https://doi.org/10.1016/j.engappai.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051489399
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1016/j.epsr.2004.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013521285
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/j.ijepes.2004.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038748485
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.ijepes.2009.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003062773
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/j.ijepes.2014.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031630918
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/j.ijepes.2016.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027509990
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/j.measurement.2012.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003083814
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1049/iet-gtd.2008.0316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056826511
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1049/iet-gtd.2013.0239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056827171
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1049/ip-gtd:19960681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056852654
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1080/07313569708955759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013592997
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1080/15325008.2013.763312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044355183
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1080/15325008.2015.1091862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010893599
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/icpeices.2016.7853543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095080306
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tpwrd.2003.822535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061771316
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tpwrd.2006.876695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061772142
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tpwrd.2006.876981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061772152
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tpwrd.2010.2053222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061773464
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tpwrd.2016.2598553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061775446
104 rdf:type schema:CreativeWork
105 https://doi.org/10.3233/jifs-169248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084430470
106 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...