A wrapper-filter feature selection technique based on ant colony optimization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-11

AUTHORS

Manosij Ghosh, Ritam Guha, Ram Sarkar, Ajith Abraham

ABSTRACT

N/A

Journal

TITLE

Neural Computing and Applications

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-019-04171-3

DOI

http://dx.doi.org/10.1007/s00521-019-04171-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113382455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Ghosh", 
        "givenName": "Manosij", 
        "type": "Person"
      }, 
      {
        "familyName": "Guha", 
        "givenName": "Ritam", 
        "type": "Person"
      }, 
      {
        "familyName": "Sarkar", 
        "givenName": "Ram", 
        "type": "Person"
      }, 
      {
        "familyName": "Abraham", 
        "givenName": "Ajith", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.07.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001470719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004358329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2007.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007560813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-011-0241-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009081493", 
          "https://doi.org/10.1007/s00366-011-0241-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2006.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009169581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2015.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010560414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012477824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1569901.1569930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020863553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021976145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(97)00057-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025545791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026002831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027332108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2014.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028955645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.09.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030557946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032984187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032984187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.06.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034628147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2013.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036158139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2013.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036158139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-739x(00)00043-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037203471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02699930903485076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039354113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.06.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042348320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043299548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2009.03.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050846875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2016.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053442576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.990133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.484436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5254.671091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061186205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.265956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2017.04.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085130962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.04.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085387136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2017.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085434666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2017.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085434666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2017.2751008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091667465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2017.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092597081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aisp.2015.7123519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093894321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icec.1996.542672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094130961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2018.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101244589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-7566-7_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103197015", 
          "https://doi.org/10.1007/978-981-10-7566-7_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10103-018-2544-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104372752", 
          "https://doi.org/10.1007/s10103-018-2544-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2018.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105317211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2018.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105317211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2018.06.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105460357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-91086-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107124659", 
          "https://doi.org/10.1007/978-3-319-91086-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2018.09.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107161167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2018.09.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107161167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijinfomgt.2018.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110582155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijinfomgt.2018.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110582155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijinfomgt.2018.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110582155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-11", 
    "datePublishedReg": "2019-04-11", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-019-04171-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "A wrapper-filter feature selection technique based on ant colony optimization", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113382455"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-019-04171-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-019-04171-3", 
      "https://app.dimensions.ai/details/publication/pub.1113382455"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106828_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00521-019-04171-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04171-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04171-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04171-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04171-3'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      18 PREDICATES      61 URIs      13 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-019-04171-3 schema:author N9129c98a97194d598c50feb851c72056
2 schema:citation sg:pub.10.1007/978-3-319-91086-4_10
3 sg:pub.10.1007/978-981-10-7566-7_46
4 sg:pub.10.1007/s00366-011-0241-y
5 sg:pub.10.1007/s10103-018-2544-3
6 https://doi.org/10.1016/j.advengsoft.2013.12.007
7 https://doi.org/10.1016/j.advengsoft.2015.11.004
8 https://doi.org/10.1016/j.advengsoft.2016.01.008
9 https://doi.org/10.1016/j.aej.2017.04.014
10 https://doi.org/10.1016/j.amc.2009.03.090
11 https://doi.org/10.1016/j.asoc.2015.02.036
12 https://doi.org/10.1016/j.asoc.2016.01.044
13 https://doi.org/10.1016/j.asoc.2017.04.061
14 https://doi.org/10.1016/j.asoc.2017.11.006
15 https://doi.org/10.1016/j.engappai.2014.03.007
16 https://doi.org/10.1016/j.eswa.2006.04.001
17 https://doi.org/10.1016/j.eswa.2008.08.022
18 https://doi.org/10.1016/j.eswa.2011.07.062
19 https://doi.org/10.1016/j.eswa.2011.09.073
20 https://doi.org/10.1016/j.eswa.2018.06.057
21 https://doi.org/10.1016/j.eswa.2018.09.045
22 https://doi.org/10.1016/j.ijinfomgt.2018.12.001
23 https://doi.org/10.1016/j.knosys.2015.04.007
24 https://doi.org/10.1016/j.knosys.2018.06.025
25 https://doi.org/10.1016/j.neucom.2014.03.053
26 https://doi.org/10.1016/j.neucom.2014.06.067
27 https://doi.org/10.1016/j.neucom.2015.05.022
28 https://doi.org/10.1016/j.neucom.2015.06.083
29 https://doi.org/10.1016/j.neucom.2017.04.053
30 https://doi.org/10.1016/j.patcog.2007.02.007
31 https://doi.org/10.1016/j.patcog.2015.03.020
32 https://doi.org/10.1016/j.swevo.2018.02.013
33 https://doi.org/10.1016/s0031-3203(97)00057-5
34 https://doi.org/10.1016/s0167-739x(00)00043-1
35 https://doi.org/10.1080/02699930903485076
36 https://doi.org/10.1109/34.990133
37 https://doi.org/10.1109/3477.484436
38 https://doi.org/10.1109/5254.671091
39 https://doi.org/10.1109/72.265956
40 https://doi.org/10.1109/aisp.2015.7123519
41 https://doi.org/10.1109/icec.1996.542672
42 https://doi.org/10.1109/tie.2017.2751008
43 https://doi.org/10.1145/1569901.1569930
44 schema:datePublished 2019-04-11
45 schema:datePublishedReg 2019-04-11
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf sg:journal.1104357
50 schema:name A wrapper-filter feature selection technique based on ant colony optimization
51 schema:productId N69ac3f786ca34625a47ddb08f7dcf3dc
52 N872b0b0f4b3c4d4c82ee209a82f167dd
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113382455
54 https://doi.org/10.1007/s00521-019-04171-3
55 schema:sdDatePublished 2019-04-16T06:24
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N0a07d0d3e4274467886ffa1124d82189
58 schema:url http://link.springer.com/10.1007/s00521-019-04171-3
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0a07d0d3e4274467886ffa1124d82189 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N270a998b89f8492291423563c0a980dd rdf:first N618acfc8baa24b58ac08515cf55fbefb
65 rdf:rest Na7bfd7e1e28245e095f9dea16e37af3c
66 N618acfc8baa24b58ac08515cf55fbefb schema:familyName Guha
67 schema:givenName Ritam
68 rdf:type schema:Person
69 N69ac3f786ca34625a47ddb08f7dcf3dc schema:name doi
70 schema:value 10.1007/s00521-019-04171-3
71 rdf:type schema:PropertyValue
72 N872b0b0f4b3c4d4c82ee209a82f167dd schema:name dimensions_id
73 schema:value pub.1113382455
74 rdf:type schema:PropertyValue
75 N9129c98a97194d598c50feb851c72056 rdf:first Ned31b374284a4e729e21d44be2a0f52c
76 rdf:rest N270a998b89f8492291423563c0a980dd
77 N9b293e40d36b46a6a75868c05bbcc0a7 schema:familyName Sarkar
78 schema:givenName Ram
79 rdf:type schema:Person
80 Na7bfd7e1e28245e095f9dea16e37af3c rdf:first N9b293e40d36b46a6a75868c05bbcc0a7
81 rdf:rest Nf36446538a524270b9dcfa5fc9c83b91
82 Nddabc106f278487ebef00c60c8ac8e7f schema:familyName Abraham
83 schema:givenName Ajith
84 rdf:type schema:Person
85 Ned31b374284a4e729e21d44be2a0f52c schema:familyName Ghosh
86 schema:givenName Manosij
87 rdf:type schema:Person
88 Nf36446538a524270b9dcfa5fc9c83b91 rdf:first Nddabc106f278487ebef00c60c8ac8e7f
89 rdf:rest rdf:nil
90 sg:journal.1104357 schema:issn 0941-0643
91 1433-3058
92 schema:name Neural Computing and Applications
93 rdf:type schema:Periodical
94 sg:pub.10.1007/978-3-319-91086-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107124659
95 https://doi.org/10.1007/978-3-319-91086-4_10
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-981-10-7566-7_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103197015
98 https://doi.org/10.1007/978-981-10-7566-7_46
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00366-011-0241-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009081493
101 https://doi.org/10.1007/s00366-011-0241-y
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10103-018-2544-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104372752
104 https://doi.org/10.1007/s10103-018-2544-3
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.advengsoft.2013.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036158139
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.advengsoft.2015.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010560414
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.advengsoft.2016.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053442576
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.aej.2017.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085434666
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.amc.2009.03.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846875
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.asoc.2015.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026002831
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.asoc.2016.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043299548
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.asoc.2017.04.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085130962
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.asoc.2017.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092597081
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.engappai.2014.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028955645
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.eswa.2006.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009169581
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.eswa.2008.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004358329
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.eswa.2011.07.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001470719
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.eswa.2011.09.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030557946
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2018.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105460357
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.eswa.2018.09.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107161167
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ijinfomgt.2018.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110582155
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.knosys.2015.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027332108
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.knosys.2018.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105317211
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.neucom.2014.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012477824
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neucom.2014.06.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042348320
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neucom.2015.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021976145
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.neucom.2015.06.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034628147
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.neucom.2017.04.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085387136
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.patcog.2007.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007560813
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.patcog.2015.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032984187
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.swevo.2018.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101244589
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0031-3203(97)00057-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025545791
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0167-739x(00)00043-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037203471
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/02699930903485076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039354113
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/34.990133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157378
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/3477.484436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158013
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/5254.671091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186205
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/72.265956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218404
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/aisp.2015.7123519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093894321
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/icec.1996.542672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094130961
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tie.2017.2751008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091667465
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/1569901.1569930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020863553
181 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...