On the automated, evolutionary design of neural networks: past, present, and future View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Alejandro Baldominos, Yago Saez, Pedro Isasi

ABSTRACT

Neuroevolution is the name given to a field of computer science that applies evolutionary computation for evolving some aspects of neural networks. After the AI Winter came to an end, neural networks reemerged to solve a great variety of problems. However, their usage requires designing their topology, a decision with a potentially high impact on performance. Whereas many works have tried to suggest rules-of-thumb for designing topologies, the truth is that there are not analytic procedures for determining the optimal one for a given problem, and trial-and-error is often used instead. Neuroevolution arose almost 3 decades ago, with some works focusing on the evolutionary design of the topology and most works describing techniques for learning connection weights. Since then, evolutionary computation has been proved to be a convenient approach for determining the topology and weights of neural networks, and neuroevolution has been applied to a great variety of fields. However, for more than 2 decades neuroevolution has mainly focused on simple artificial neural networks models, far from today’s deep learning standards. This is insufficient for determining good architectures for modern networks extensively used nowadays, which involve multiple hidden layers, recurrent cells, etc. More importantly, deep and convolutional neural networks have become a de facto standard in representation learning for solving many different problems, and neuroevolution has only focused in this kind of networks in very recent years, with many works being presented in 2017 onward. In this paper, we review the field of neuroevolution during the last 3 decades. We will put the focus on very recent works on the evolution of deep and convolutional neural networks, which is a new but growing field of study. To the best of our knowledge, this is the best survey reviewing the literature in this field, and we have described the features of each work as well as their performance on well-known databases when available. This work aims to provide a complete reference of all works related to neuroevolution of convolutional neural networks up to the date. Finally, we will provide some future directions for the advancement of this research area. More... »

PAGES

1-27

References to SciGraph publications

  • 2018-08-21. Lamarckian Evolution of Convolutional Neural Networks in PARALLEL PROBLEM SOLVING FROM NATURE – PPSN XV
  • 2018-08-30. Limited Evaluation Evolutionary Optimization of Large Neural Networks in KI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE
  • 1990-11. Optimality theory in evolutionary biology in NATURE
  • 1991. A learning strategy for neural networks based on a modified evolutionary strategy in PARALLEL PROBLEM SOLVING FROM NATURE
  • 2018. Evolution of Convolutional Highway Networks in APPLICATIONS OF EVOLUTIONARY COMPUTATION
  • 2015-12. ImageNet Large Scale Visual Recognition Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1991. Performance evaluation of evolutionarily created neural network topologies in PARALLEL PROBLEM SOLVING FROM NATURE
  • 2018-11-09. Model Selection in Committees of Evolved Convolutional Neural Networks Using Genetic Algorithms in INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING – IDEAL 2018
  • 2013-03. Evolutionary artificial neural networks: a review in ARTIFICIAL INTELLIGENCE REVIEW
  • 2018. Evolutionary Approach to Machine Learning and Deep Neural Networks in NONE
  • 1989-12. Approximation by superpositions of a sigmoidal function in MATHEMATICS OF CONTROL, SIGNALS, AND SYSTEMS
  • 2006. The CMA Evolution Strategy: A Comparing Review in TOWARDS A NEW EVOLUTIONARY COMPUTATION
  • 2008-03. Neuroevolution: from architectures to learning in EVOLUTIONARY INTELLIGENCE
  • 2019-03. DENSER: deep evolutionary network structured representation in GENETIC PROGRAMMING AND EVOLVABLE MACHINES
  • 1976-06. Taylor expansion of the accumulated rounding error in BIT NUMERICAL MATHEMATICS
  • 2017. Topology of a Neural Network in ENCYCLOPEDIA OF MACHINE LEARNING AND DATA MINING
  • 1986-10. Learning representations by back-propagating errors in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-019-04160-6

    DOI

    http://dx.doi.org/10.1007/s00521-019-04160-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113042666


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Computer Science Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baldominos", 
            "givenName": "Alejandro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Computer Science Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saez", 
            "givenName": "Yago", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Computer Science Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Isasi", 
            "givenName": "Pedro", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2834892.2834896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001211764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2908812.2908890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002672822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1273496.1273556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002982013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12065-007-0002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003421528", 
              "https://doi.org/10.1007/s12065-007-0002-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12065-007-0002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003421528", 
              "https://doi.org/10.1007/s12065-007-0002-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/937503.937505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008740328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-015-0816-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009767488", 
              "https://doi.org/10.1007/s11263-015-0816-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-011-9270-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010827521", 
              "https://doi.org/10.1007/s10462-011-9270-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3233/his-2007-4304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016284263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017268549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/323533a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018367015", 
              "https://doi.org/10.1038/323533a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0029770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019931233", 
              "https://doi.org/10.1007/bfb0029770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/frobt.2016.00040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021308176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90032-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022090648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90032-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022090648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2576768.2598358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022599118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/eb005587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022661580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-32494-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022688207", 
              "https://doi.org/10.1007/3-540-32494-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.es.09.110178.000335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024632576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/artl.2009.15.2.15202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025038480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-1448-1.50014-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026046705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/int.4550080406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026534251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mind/lix.236.433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027055246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1276958.1277162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030329076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/348027a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032313221", 
              "https://doi.org/10.1038/348027a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/106365602320169811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033705757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(05)80061-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034883878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038140272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90033-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040786575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90033-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040786575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041794635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1990.2.2.198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042651472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/artl_a_00071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045403364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(94)90023-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049597949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(94)90023-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049597949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90031-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049953486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90031-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049953486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0029764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050531071", 
              "https://doi.org/10.1007/bfb0029764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01931367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051709453", 
              "https://doi.org/10.1007/bf01931367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01931367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051709453", 
              "https://doi.org/10.1007/bf01931367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90078-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052511580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90078-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052511580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/425740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052970499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1989.1.1.151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053187839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.726791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.265960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.572107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cogann.1992.273949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086270344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cogann.1992.273946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086275343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cogann.1992.273950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086291318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cogann.1992.273947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086302421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cogann.1992.273942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086315705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cogann.1992.273944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086350420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3071178.3071229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090608637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093359587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wacv.2015.71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093567158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/etd.1995.403479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094570480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fskd.2016.7603153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094965517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2003.1299414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095366447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3067695.3076002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096106561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3067695.3076002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096106561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2017.12.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100074591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2017.8297018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101187463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-77538-8_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101372712", 
              "https://doi.org/10.1007/978-3-319-77538-8_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s18041288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103624153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-13-0200-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104653782", 
              "https://doi.org/10.1007/978-981-13-0200-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-99259-4_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106254462", 
              "https://doi.org/10.1007/978-3-319-99259-4_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-99259-4_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106254462", 
              "https://doi.org/10.1007/978-3-319-99259-4_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-00111-7_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106429159", 
              "https://doi.org/10.1007/978-3-030-00111-7_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-00111-7_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106429159", 
              "https://doi.org/10.1007/978-3-030-00111-7_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10710-018-9339-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107273244", 
              "https://doi.org/10.1007/s10710-018-9339-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10710-018-9339-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107273244", 
              "https://doi.org/10.1007/s10710-018-9339-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-03493-1_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109832313", 
              "https://doi.org/10.1007/978-3-030-03493-1_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-03493-1_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109832313", 
              "https://doi.org/10.1007/978-3-030-03493-1_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7687-1_843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112905004", 
              "https://doi.org/10.1007/978-1-4899-7687-1_843"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-27", 
        "datePublishedReg": "2019-03-27", 
        "description": "Neuroevolution is the name given to a field of computer science that applies evolutionary computation for evolving some aspects of neural networks. After the AI Winter came to an end, neural networks reemerged to solve a great variety of problems. However, their usage requires designing their topology, a decision with a potentially high impact on performance. Whereas many works have tried to suggest rules-of-thumb for designing topologies, the truth is that there are not analytic procedures for determining the optimal one for a given problem, and trial-and-error is often used instead. Neuroevolution arose almost 3 decades ago, with some works focusing on the evolutionary design of the topology and most works describing techniques for learning connection weights. Since then, evolutionary computation has been proved to be a convenient approach for determining the topology and weights of neural networks, and neuroevolution has been applied to a great variety of fields. However, for more than 2 decades neuroevolution has mainly focused on simple artificial neural networks models, far from today\u2019s deep learning standards. This is insufficient for determining good architectures for modern networks extensively used nowadays, which involve multiple hidden layers, recurrent cells, etc. More importantly, deep and convolutional neural networks have become a de facto standard in representation learning for solving many different problems, and neuroevolution has only focused in this kind of networks in very recent years, with many works being presented in 2017 onward. In this paper, we review the field of neuroevolution during the last 3 decades. We will put the focus on very recent works on the evolution of deep and convolutional neural networks, which is a new but growing field of study. To the best of our knowledge, this is the best survey reviewing the literature in this field, and we have described the features of each work as well as their performance on well-known databases when available. This work aims to provide a complete reference of all works related to neuroevolution of convolutional neural networks up to the date. Finally, we will provide some future directions for the advancement of this research area.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00521-019-04160-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "type": "Periodical"
          }
        ], 
        "name": "On the automated, evolutionary design of neural networks: past, present, and future", 
        "pagination": "1-27", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3432cc8d245ea24c48b78e27359ad1cd7136b2db0e63fee5f3e72c8f5a114489"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-019-04160-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113042666"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-019-04160-6", 
          "https://app.dimensions.ai/details/publication/pub.1113042666"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00521-019-04160-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04160-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04160-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04160-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04160-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      21 PREDICATES      88 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-019-04160-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N881f49b6382f43f1858a5089a77167be
    4 schema:citation sg:pub.10.1007/3-540-32494-1_4
    5 sg:pub.10.1007/978-1-4899-7687-1_843
    6 sg:pub.10.1007/978-3-030-00111-7_23
    7 sg:pub.10.1007/978-3-030-03493-1_39
    8 sg:pub.10.1007/978-3-319-77538-8_27
    9 sg:pub.10.1007/978-3-319-99259-4_34
    10 sg:pub.10.1007/978-981-13-0200-8
    11 sg:pub.10.1007/bf01931367
    12 sg:pub.10.1007/bf02551274
    13 sg:pub.10.1007/bfb0029764
    14 sg:pub.10.1007/bfb0029770
    15 sg:pub.10.1007/s10462-011-9270-6
    16 sg:pub.10.1007/s10710-018-9339-y
    17 sg:pub.10.1007/s11263-015-0816-y
    18 sg:pub.10.1007/s12065-007-0002-4
    19 sg:pub.10.1038/323533a0
    20 sg:pub.10.1038/348027a0
    21 https://doi.org/10.1002/int.4550080406
    22 https://doi.org/10.1016/0167-2789(90)90078-4
    23 https://doi.org/10.1016/0893-6080(91)90031-y
    24 https://doi.org/10.1016/0893-6080(91)90032-z
    25 https://doi.org/10.1016/0893-6080(91)90033-2
    26 https://doi.org/10.1016/0893-6080(94)90023-x
    27 https://doi.org/10.1016/b978-1-4832-1448-1.50014-7
    28 https://doi.org/10.1016/j.neucom.2017.12.049
    29 https://doi.org/10.1016/s0893-6080(05)80061-9
    30 https://doi.org/10.1093/mind/lix.236.433
    31 https://doi.org/10.1108/eb005587
    32 https://doi.org/10.1109/5.726791
    33 https://doi.org/10.1109/72.265960
    34 https://doi.org/10.1109/72.572107
    35 https://doi.org/10.1109/cec.2003.1299414
    36 https://doi.org/10.1109/cogann.1992.273942
    37 https://doi.org/10.1109/cogann.1992.273944
    38 https://doi.org/10.1109/cogann.1992.273946
    39 https://doi.org/10.1109/cogann.1992.273947
    40 https://doi.org/10.1109/cogann.1992.273949
    41 https://doi.org/10.1109/cogann.1992.273950
    42 https://doi.org/10.1109/cvpr.2016.90
    43 https://doi.org/10.1109/etd.1995.403479
    44 https://doi.org/10.1109/fskd.2016.7603153
    45 https://doi.org/10.1109/icip.2017.8297018
    46 https://doi.org/10.1109/wacv.2015.71
    47 https://doi.org/10.1145/1273496.1273556
    48 https://doi.org/10.1145/1276958.1277162
    49 https://doi.org/10.1145/2576768.2598358
    50 https://doi.org/10.1145/2834892.2834896
    51 https://doi.org/10.1145/2908812.2908890
    52 https://doi.org/10.1145/3067695.3076002
    53 https://doi.org/10.1145/3071178.3071229
    54 https://doi.org/10.1145/937503.937505
    55 https://doi.org/10.1146/annurev.es.09.110178.000335
    56 https://doi.org/10.1155/2013/425740
    57 https://doi.org/10.1162/106365602320169811
    58 https://doi.org/10.1162/artl.2009.15.2.15202
    59 https://doi.org/10.1162/artl_a_00071
    60 https://doi.org/10.1162/neco.1989.1.1.151
    61 https://doi.org/10.1162/neco.1990.2.2.198
    62 https://doi.org/10.1162/neco.1997.9.8.1735
    63 https://doi.org/10.1371/journal.pcbi.1002063
    64 https://doi.org/10.1371/journal.pcbi.1002236
    65 https://doi.org/10.3233/his-2007-4304
    66 https://doi.org/10.3389/frobt.2016.00040
    67 https://doi.org/10.3390/s18041288
    68 schema:datePublished 2019-03-27
    69 schema:datePublishedReg 2019-03-27
    70 schema:description Neuroevolution is the name given to a field of computer science that applies evolutionary computation for evolving some aspects of neural networks. After the AI Winter came to an end, neural networks reemerged to solve a great variety of problems. However, their usage requires designing their topology, a decision with a potentially high impact on performance. Whereas many works have tried to suggest rules-of-thumb for designing topologies, the truth is that there are not analytic procedures for determining the optimal one for a given problem, and trial-and-error is often used instead. Neuroevolution arose almost 3 decades ago, with some works focusing on the evolutionary design of the topology and most works describing techniques for learning connection weights. Since then, evolutionary computation has been proved to be a convenient approach for determining the topology and weights of neural networks, and neuroevolution has been applied to a great variety of fields. However, for more than 2 decades neuroevolution has mainly focused on simple artificial neural networks models, far from today’s deep learning standards. This is insufficient for determining good architectures for modern networks extensively used nowadays, which involve multiple hidden layers, recurrent cells, etc. More importantly, deep and convolutional neural networks have become a de facto standard in representation learning for solving many different problems, and neuroevolution has only focused in this kind of networks in very recent years, with many works being presented in 2017 onward. In this paper, we review the field of neuroevolution during the last 3 decades. We will put the focus on very recent works on the evolution of deep and convolutional neural networks, which is a new but growing field of study. To the best of our knowledge, this is the best survey reviewing the literature in this field, and we have described the features of each work as well as their performance on well-known databases when available. This work aims to provide a complete reference of all works related to neuroevolution of convolutional neural networks up to the date. Finally, we will provide some future directions for the advancement of this research area.
    71 schema:genre research_article
    72 schema:inLanguage en
    73 schema:isAccessibleForFree false
    74 schema:isPartOf sg:journal.1104357
    75 schema:name On the automated, evolutionary design of neural networks: past, present, and future
    76 schema:pagination 1-27
    77 schema:productId N2a2088d657724d79b89670945dc8a6cf
    78 N811998b89f484abc88778f620dcc9b2b
    79 N8850ae247cb24546807bf73aa732837e
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113042666
    81 https://doi.org/10.1007/s00521-019-04160-6
    82 schema:sdDatePublished 2019-04-11T13:17
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N88431fa3cc704a8588059169ce4efa65
    85 schema:url https://link.springer.com/10.1007%2Fs00521-019-04160-6
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N0388c77a9a91425480c4630ca3c0717f rdf:first Nf746ac7bef3c4ae2a5703a462b0ed9bf
    90 rdf:rest N51fec7b2265a4cf28e684ead1582d472
    91 N2a2088d657724d79b89670945dc8a6cf schema:name readcube_id
    92 schema:value 3432cc8d245ea24c48b78e27359ad1cd7136b2db0e63fee5f3e72c8f5a114489
    93 rdf:type schema:PropertyValue
    94 N51fec7b2265a4cf28e684ead1582d472 rdf:first N66570018821346449f40f2b0420f1ebf
    95 rdf:rest rdf:nil
    96 N55b618090be64a4b99f5d20fb4bac002 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    97 schema:familyName Baldominos
    98 schema:givenName Alejandro
    99 rdf:type schema:Person
    100 N66570018821346449f40f2b0420f1ebf schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    101 schema:familyName Isasi
    102 schema:givenName Pedro
    103 rdf:type schema:Person
    104 N811998b89f484abc88778f620dcc9b2b schema:name dimensions_id
    105 schema:value pub.1113042666
    106 rdf:type schema:PropertyValue
    107 N881f49b6382f43f1858a5089a77167be rdf:first N55b618090be64a4b99f5d20fb4bac002
    108 rdf:rest N0388c77a9a91425480c4630ca3c0717f
    109 N88431fa3cc704a8588059169ce4efa65 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N8850ae247cb24546807bf73aa732837e schema:name doi
    112 schema:value 10.1007/s00521-019-04160-6
    113 rdf:type schema:PropertyValue
    114 Nf746ac7bef3c4ae2a5703a462b0ed9bf schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    115 schema:familyName Saez
    116 schema:givenName Yago
    117 rdf:type schema:Person
    118 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Information and Computing Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Artificial Intelligence and Image Processing
    123 rdf:type schema:DefinedTerm
    124 sg:journal.1104357 schema:issn 0941-0643
    125 1433-3058
    126 schema:name Neural Computing and Applications
    127 rdf:type schema:Periodical
    128 sg:pub.10.1007/3-540-32494-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022688207
    129 https://doi.org/10.1007/3-540-32494-1_4
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-1-4899-7687-1_843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112905004
    132 https://doi.org/10.1007/978-1-4899-7687-1_843
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-030-00111-7_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106429159
    135 https://doi.org/10.1007/978-3-030-00111-7_23
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/978-3-030-03493-1_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109832313
    138 https://doi.org/10.1007/978-3-030-03493-1_39
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-3-319-77538-8_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101372712
    141 https://doi.org/10.1007/978-3-319-77538-8_27
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-3-319-99259-4_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106254462
    144 https://doi.org/10.1007/978-3-319-99259-4_34
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-981-13-0200-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104653782
    147 https://doi.org/10.1007/978-981-13-0200-8
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf01931367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051709453
    150 https://doi.org/10.1007/bf01931367
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
    153 https://doi.org/10.1007/bf02551274
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bfb0029764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050531071
    156 https://doi.org/10.1007/bfb0029764
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bfb0029770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019931233
    159 https://doi.org/10.1007/bfb0029770
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10462-011-9270-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010827521
    162 https://doi.org/10.1007/s10462-011-9270-6
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10710-018-9339-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273244
    165 https://doi.org/10.1007/s10710-018-9339-y
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
    168 https://doi.org/10.1007/s11263-015-0816-y
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s12065-007-0002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003421528
    171 https://doi.org/10.1007/s12065-007-0002-4
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
    174 https://doi.org/10.1038/323533a0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/348027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032313221
    177 https://doi.org/10.1038/348027a0
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1002/int.4550080406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026534251
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/0167-2789(90)90078-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052511580
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/0893-6080(91)90031-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049953486
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/0893-6080(91)90032-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022090648
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/0893-6080(91)90033-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040786575
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/0893-6080(94)90023-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049597949
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/b978-1-4832-1448-1.50014-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026046705
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.neucom.2017.12.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100074591
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/s0893-6080(05)80061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034883878
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1093/mind/lix.236.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027055246
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1108/eb005587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022661580
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1109/72.265960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218408
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1109/72.572107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218905
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/cec.2003.1299414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095366447
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/cogann.1992.273942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086315705
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/cogann.1992.273944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086350420
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/cogann.1992.273946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086275343
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1109/cogann.1992.273947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086302421
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1109/cogann.1992.273949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086270344
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1109/cogann.1992.273950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086291318
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1109/cvpr.2016.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093359587
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1109/etd.1995.403479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094570480
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1109/fskd.2016.7603153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094965517
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1109/icip.2017.8297018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101187463
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1109/wacv.2015.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093567158
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1145/1273496.1273556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002982013
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1145/1276958.1277162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030329076
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1145/2576768.2598358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022599118
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1145/2834892.2834896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001211764
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1145/2908812.2908890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002672822
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1145/3067695.3076002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096106561
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1145/3071178.3071229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090608637
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1145/937503.937505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008740328
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1146/annurev.es.09.110178.000335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024632576
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1155/2013/425740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052970499
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1162/106365602320169811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033705757
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1162/artl.2009.15.2.15202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025038480
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1162/artl_a_00071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045403364
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1162/neco.1989.1.1.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053187839
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1162/neco.1990.2.2.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042651472
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1371/journal.pcbi.1002063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041794635
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1371/journal.pcbi.1002236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017268549
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.3233/his-2007-4304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016284263
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.3389/frobt.2016.00040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021308176
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.3390/s18041288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103624153
    272 rdf:type schema:CreativeWork
    273 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    274 schema:name Computer Science Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganes, Madrid, Spain
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...