Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Alaa Tharwat, Thomas Gabel

ABSTRACT

The parameters of support vector machines (SVMs) such as kernel parameters and the penalty parameter have a great influence on the accuracy and complexity of the classification models. In the past, different evolutionary optimization algorithms were employed for optimizing SVMs; in this paper, we propose a social ski-driver (SSD) optimization algorithm which is inspired from different evolutionary optimization algorithms for optimizing the parameters of SVMs, with the aim of improving the classification performance. To cope with the problem of imbalanced data which is one of the challenging problems for building robust classification models, the proposed algorithm (SSD-SVM) was enhanced to deal with imbalanced data. In this study, eight standard imbalanced datasets were used for testing our proposed algorithm. For verification, the results of the SSD-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, and particle swarm optimization (PSO). The experimental results show that the SSD-SVM algorithm is capable of finding near-optimal values of SVMs parameters. The results also demonstrated high classification performance compared to the PSO algorithm. More... »

PAGES

1-14

References to SciGraph publications

  • 2005. Support Vector Machines: Theory and Applications in NONE
  • 2018. Parameter Optimization of Support Vector Machine Using Dragonfly Algorithm in PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2017
  • 1998-06. A Tutorial on Support Vector Machines for Pattern Recognition in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2018-03. Chaotic antlion algorithm for parameter optimization of support vector machine in APPLIED INTELLIGENCE
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2011-10. Model selection for primal SVM in MACHINE LEARNING
  • 2019-02-01. Parameter investigation of support vector machine classifier with kernel functions in KNOWLEDGE AND INFORMATION SYSTEMS
  • 2002-01. Choosing Multiple Parameters for Support Vector Machines in MACHINE LEARNING
  • 2004. Combining Fingerprint and Voiceprint Biometrics for Identity Verification: an Experimental Comparison in BIOMETRIC AUTHENTICATION
  • 2007-06. Particle swarm optimization in SWARM INTELLIGENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-019-04159-z

    DOI

    http://dx.doi.org/10.1007/s00521-019-04159-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113177335


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Frankfurt University of Applied Sciences", 
              "id": "https://www.grid.ac/institutes/grid.448814.5", 
              "name": [
                "Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tharwat", 
            "givenName": "Alaa", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Frankfurt University of Applied Sciences", 
              "id": "https://www.grid.ac/institutes/grid.448814.5", 
              "name": [
                "Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gabel", 
            "givenName": "Thomas", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-25948-0_90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003927005", 
              "https://doi.org/10.1007/978-3-540-25948-0_90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-25948-0_90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003927005", 
              "https://doi.org/10.1007/978-3-540-25948-0_90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2004.11.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009914374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solener.2013.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013685633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.12.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015129167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2008.06.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017544219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2005.09.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018866462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2005.09.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018866462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.08.088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018882601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364904045481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020977911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364904045481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020977911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11721-007-0002-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033319589", 
              "https://doi.org/10.1007/s11721-007-0002-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advengsoft.2013.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036158139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2013.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037810780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-011-5246-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039380961", 
              "https://doi.org/10.1007/s10994-011-5246-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009715923555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042048349", 
              "https://doi.org/10.1023/a:1009715923555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2009.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042905923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2016.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044943833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.03.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046391439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2007.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050012563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2014.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050475178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012450327387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050536379", 
              "https://doi.org/10.1023/a:1012450327387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2008.239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218001409007326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062949830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2017.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084085206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-017-0994-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090900707", 
              "https://doi.org/10.1007/s10489-017-0994-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-017-0994-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090900707", 
              "https://doi.org/10.1007/s10489-017-0994-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-64861-3_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091401510", 
              "https://doi.org/10.1007/978-3-319-64861-3_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2017.2779794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093159610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isi.2015.9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095672750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/978-1-5225-2229-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096035382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aci.2018.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106269425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b95439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109718967", 
              "https://doi.org/10.1007/b95439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b95439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109718967", 
              "https://doi.org/10.1007/b95439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b95439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109718967", 
              "https://doi.org/10.1007/b95439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-019-01335-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111840881", 
              "https://doi.org/10.1007/s10115-019-01335-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-01", 
        "datePublishedReg": "2019-04-01", 
        "description": "The parameters of support vector machines (SVMs) such as kernel parameters and the penalty parameter have a great influence on the accuracy and complexity of the classification models. In the past, different evolutionary optimization algorithms were employed for optimizing SVMs; in this paper, we propose a social ski-driver (SSD) optimization algorithm which is inspired from different evolutionary optimization algorithms for optimizing the parameters of SVMs, with the aim of improving the classification performance. To cope with the problem of imbalanced data which is one of the challenging problems for building robust classification models, the proposed algorithm (SSD-SVM) was enhanced to deal with imbalanced data. In this study, eight standard imbalanced datasets were used for testing our proposed algorithm. For verification, the results of the SSD-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, and particle swarm optimization (PSO). The experimental results show that the SSD-SVM algorithm is capable of finding near-optimal values of SVMs parameters. The results also demonstrated high classification performance compared to the PSO algorithm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00521-019-04159-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "type": "Periodical"
          }
        ], 
        "name": "Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f14fdbd15dea24521ddee81f41c225483e0ccb5671d358d875b04800e69871a4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-019-04159-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113177335"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-019-04159-z", 
          "https://app.dimensions.ai/details/publication/pub.1113177335"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00521-019-04159-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04159-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04159-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04159-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04159-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      21 PREDICATES      56 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-019-04159-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nd5ba96b7477640f98894080e518027d0
    4 schema:citation sg:pub.10.1007/978-3-319-64861-3_29
    5 sg:pub.10.1007/978-3-540-25948-0_90
    6 sg:pub.10.1007/b95439
    7 sg:pub.10.1007/bf00994018
    8 sg:pub.10.1007/s10115-019-01335-4
    9 sg:pub.10.1007/s10489-017-0994-0
    10 sg:pub.10.1007/s10994-011-5246-7
    11 sg:pub.10.1007/s11721-007-0002-0
    12 sg:pub.10.1023/a:1009715923555
    13 sg:pub.10.1023/a:1012450327387
    14 https://doi.org/10.1016/j.aci.2018.08.003
    15 https://doi.org/10.1016/j.advengsoft.2013.12.007
    16 https://doi.org/10.1016/j.asoc.2009.11.003
    17 https://doi.org/10.1016/j.compbiomed.2013.01.020
    18 https://doi.org/10.1016/j.eswa.2005.09.024
    19 https://doi.org/10.1016/j.eswa.2007.08.088
    20 https://doi.org/10.1016/j.eswa.2008.06.046
    21 https://doi.org/10.1016/j.eswa.2010.03.067
    22 https://doi.org/10.1016/j.jbi.2017.03.002
    23 https://doi.org/10.1016/j.knosys.2015.12.022
    24 https://doi.org/10.1016/j.neucom.2004.11.022
    25 https://doi.org/10.1016/j.patcog.2007.04.009
    26 https://doi.org/10.1016/j.patrec.2014.11.011
    27 https://doi.org/10.1016/j.patrec.2016.10.007
    28 https://doi.org/10.1016/j.solener.2013.10.002
    29 https://doi.org/10.1109/access.2017.2779794
    30 https://doi.org/10.1109/isi.2015.9
    31 https://doi.org/10.1109/tkde.2008.239
    32 https://doi.org/10.1142/s0218001409007326
    33 https://doi.org/10.1177/0278364904045481
    34 https://doi.org/10.1613/jair.953
    35 https://doi.org/10.4018/978-1-5225-2229-4
    36 schema:datePublished 2019-04-01
    37 schema:datePublishedReg 2019-04-01
    38 schema:description The parameters of support vector machines (SVMs) such as kernel parameters and the penalty parameter have a great influence on the accuracy and complexity of the classification models. In the past, different evolutionary optimization algorithms were employed for optimizing SVMs; in this paper, we propose a social ski-driver (SSD) optimization algorithm which is inspired from different evolutionary optimization algorithms for optimizing the parameters of SVMs, with the aim of improving the classification performance. To cope with the problem of imbalanced data which is one of the challenging problems for building robust classification models, the proposed algorithm (SSD-SVM) was enhanced to deal with imbalanced data. In this study, eight standard imbalanced datasets were used for testing our proposed algorithm. For verification, the results of the SSD-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, and particle swarm optimization (PSO). The experimental results show that the SSD-SVM algorithm is capable of finding near-optimal values of SVMs parameters. The results also demonstrated high classification performance compared to the PSO algorithm.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf sg:journal.1104357
    43 schema:name Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm
    44 schema:pagination 1-14
    45 schema:productId N6e9fb7e276e548d88cc70b5b653e4f58
    46 N72d4df559a754e53992eac89fadf13ac
    47 N8187cefa6e784911a9acc93d4b255bd7
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113177335
    49 https://doi.org/10.1007/s00521-019-04159-z
    50 schema:sdDatePublished 2019-04-11T13:59
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nc41623fb89f34193897144db3f441b4b
    53 schema:url https://link.springer.com/10.1007%2Fs00521-019-04159-z
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N25b37c6b99c043bfb478635d24465e97 schema:affiliation https://www.grid.ac/institutes/grid.448814.5
    58 schema:familyName Gabel
    59 schema:givenName Thomas
    60 rdf:type schema:Person
    61 N3b8fe3e64296439289e9865794782394 schema:affiliation https://www.grid.ac/institutes/grid.448814.5
    62 schema:familyName Tharwat
    63 schema:givenName Alaa
    64 rdf:type schema:Person
    65 N6e9fb7e276e548d88cc70b5b653e4f58 schema:name dimensions_id
    66 schema:value pub.1113177335
    67 rdf:type schema:PropertyValue
    68 N72d4df559a754e53992eac89fadf13ac schema:name doi
    69 schema:value 10.1007/s00521-019-04159-z
    70 rdf:type schema:PropertyValue
    71 N8187cefa6e784911a9acc93d4b255bd7 schema:name readcube_id
    72 schema:value f14fdbd15dea24521ddee81f41c225483e0ccb5671d358d875b04800e69871a4
    73 rdf:type schema:PropertyValue
    74 Nc41623fb89f34193897144db3f441b4b schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 Nd5ba96b7477640f98894080e518027d0 rdf:first N3b8fe3e64296439289e9865794782394
    77 rdf:rest Nd6cc59334ed6434db97da2bd2665d7c0
    78 Nd6cc59334ed6434db97da2bd2665d7c0 rdf:first N25b37c6b99c043bfb478635d24465e97
    79 rdf:rest rdf:nil
    80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information and Computing Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Artificial Intelligence and Image Processing
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1104357 schema:issn 0941-0643
    87 1433-3058
    88 schema:name Neural Computing and Applications
    89 rdf:type schema:Periodical
    90 sg:pub.10.1007/978-3-319-64861-3_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091401510
    91 https://doi.org/10.1007/978-3-319-64861-3_29
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-3-540-25948-0_90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003927005
    94 https://doi.org/10.1007/978-3-540-25948-0_90
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/b95439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718967
    97 https://doi.org/10.1007/b95439
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    100 https://doi.org/10.1007/bf00994018
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s10115-019-01335-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111840881
    103 https://doi.org/10.1007/s10115-019-01335-4
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s10489-017-0994-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090900707
    106 https://doi.org/10.1007/s10489-017-0994-0
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s10994-011-5246-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039380961
    109 https://doi.org/10.1007/s10994-011-5246-7
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s11721-007-0002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033319589
    112 https://doi.org/10.1007/s11721-007-0002-0
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1023/a:1009715923555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042048349
    115 https://doi.org/10.1023/a:1009715923555
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1023/a:1012450327387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050536379
    118 https://doi.org/10.1023/a:1012450327387
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.aci.2018.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106269425
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.advengsoft.2013.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036158139
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.asoc.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042905923
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.compbiomed.2013.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037810780
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.eswa.2005.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018866462
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.eswa.2007.08.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018882601
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.eswa.2008.06.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017544219
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.eswa.2010.03.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046391439
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.jbi.2017.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084085206
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.knosys.2015.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015129167
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.neucom.2004.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009914374
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.patcog.2007.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050012563
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.patrec.2014.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050475178
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.patrec.2016.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044943833
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.solener.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013685633
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/access.2017.2779794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093159610
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/isi.2015.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095672750
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/tkde.2008.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661916
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1142/s0218001409007326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062949830
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1177/0278364904045481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020977911
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1613/jair.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579550
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.4018/978-1-5225-2229-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096035382
    163 rdf:type schema:CreativeWork
    164 https://www.grid.ac/institutes/grid.448814.5 schema:alternateName Frankfurt University of Applied Sciences
    165 schema:name Faculty of Computer Science and Engineering, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
    166 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...