Intrusion detection using deep sparse auto-encoder and self-taught learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-26

AUTHORS

Aqsa Saeed Qureshi, Asifullah Khan, Nauman Shamim, Muhammad Hanif Durad

ABSTRACT

With the enormous increase in the use of the Internet, secure transfer of data across networks has become a challenging task. Attackers are in continuous search of getting information from network traffic, and this is the main reason that efficient intrusion detection techniques are required to identify different kinds of network attacks. In past, various supervised and semi-supervised methods have been developed for intrusion detection. Most of these methods require a large amount of data to develop an efficient intrusion detection system. In the proposed deep neural network and adaptive self-taught-based transfer learning technique, we have exploited the concept of self-taught learning to train deep neural networks for reliable network intrusion detection. In the proposed method, a pre-trained network on regression-related task is used to extract features from NSL-KDD dataset. Original features along with extracted features from the pre-trained network are then provided as an input to the sparse auto-encoder. Self-taught learning-based extracted features, when concatenated with the original features of NSL-KDD dataset, enhance the performance of the sparse auto-encoder. Performance of self-taught learning-based approach is compared against several techniques using ten independent runs in terms of accuracy, false alarm and detection rate, area under the ROC, and PR curve. It is experimentally observed that the auto-encoder trained on the combined original and extracted features is stable and offers good generalization in comparison with the sparse auto-encoder trained on original features alone. More... »

PAGES

1-13

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-019-04152-6

DOI

http://dx.doi.org/10.1007/s00521-019-04152-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113007757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "PR-Lab, Department of Computer and Information Science, Pakistan Institute of Engineering and the Applied Sciences, 45650, Nilore, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qureshi", 
        "givenName": "Aqsa Saeed", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "PR-Lab, Department of Computer and Information Science, Pakistan Institute of Engineering and the Applied Sciences, 45650, Nilore, Islamabad, Pakistan", 
            "Centre for Mathematical Sciences, Pakistan Institute of Engineering and Applied Sciences, 45650, Nilore, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Asifullah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "PR-Lab, Department of Computer and Information Science, Pakistan Institute of Engineering and the Applied Sciences, 45650, Nilore, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shamim", 
        "givenName": "Nauman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "PR-Lab, Department of Computer and Information Science, Pakistan Institute of Engineering and the Applied Sciences, 45650, Nilore, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durad", 
        "givenName": "Muhammad Hanif", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijleo.2013.05.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009509140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cose.2008.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011421860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2004.09.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018086054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cose.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019426202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-1084-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025904676", 
          "https://doi.org/10.1007/s00521-012-1084-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-013-1371-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027070228", 
          "https://doi.org/10.1007/s00521-013-1371-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40815-016-0160-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028185957", 
          "https://doi.org/10.1007/s40815-016-0160-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-013-1517-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028740616", 
          "https://doi.org/10.1007/s00521-013-1517-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2015.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035086674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2418-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036201625", 
          "https://doi.org/10.1007/s00521-016-2418-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2418-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036201625", 
          "https://doi.org/10.1007/s00521-016-2418-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-1297-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039280626", 
          "https://doi.org/10.1007/s00521-012-1297-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-1964-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044462211", 
          "https://doi.org/10.1007/s00521-015-1964-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2325-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047379629", 
          "https://doi.org/10.1007/s00521-016-2325-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2325-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047379629", 
          "https://doi.org/10.1007/s00521-016-2325-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2012.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052663447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1273496.1273592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052861703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.08.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052937086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/65.283931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061205431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2015.2457234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061580056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2326001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/12136-8419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072594647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2017.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085458319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/confluence.2017.7943121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093629042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisda.2009.5356528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093696874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/btas.2014.6996222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093726930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094984030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icoci.2006.5276609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095169779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bigcomp.2017.7881684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095599780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2002.1007774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095758063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0002410804550458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099487776"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-26", 
    "datePublishedReg": "2019-03-26", 
    "description": "With the enormous increase in the use of the Internet, secure transfer of data across networks has become a challenging task. Attackers are in continuous search of getting information from network traffic, and this is the main reason that efficient intrusion detection techniques are required to identify different kinds of network attacks. In past, various supervised and semi-supervised methods have been developed for intrusion detection. Most of these methods require a large amount of data to develop an efficient intrusion detection system. In the proposed deep neural network and adaptive self-taught-based transfer learning technique, we have exploited the concept of self-taught learning to train deep neural networks for reliable network intrusion detection. In the proposed method, a pre-trained network on regression-related task is used to extract features from NSL-KDD dataset. Original features along with extracted features from the pre-trained network are then provided as an input to the sparse auto-encoder. Self-taught learning-based extracted features, when concatenated with the original features of NSL-KDD dataset, enhance the performance of the sparse auto-encoder. Performance of self-taught learning-based approach is compared against several techniques using ten independent runs in terms of accuracy, false alarm and detection rate, area under the ROC, and PR curve. It is experimentally observed that the auto-encoder trained on the combined original and extracted features is stable and offers good generalization in comparison with the sparse auto-encoder trained on original features alone.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-019-04152-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Intrusion detection using deep sparse auto-encoder and self-taught learning", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7ed2af27225a7b125c5d3b02e9cf91ea0360c49487628109107bde49987a1a8a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-019-04152-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113007757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-019-04152-6", 
      "https://app.dimensions.ai/details/publication/pub.1113007757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-019-04152-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04152-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04152-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04152-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04152-6'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-019-04152-6 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N65edd46b78894203a1b89f22fdbebb8a
4 schema:citation sg:pub.10.1007/s00521-012-1084-1
5 sg:pub.10.1007/s00521-012-1297-3
6 sg:pub.10.1007/s00521-013-1371-5
7 sg:pub.10.1007/s00521-013-1517-5
8 sg:pub.10.1007/s00521-015-1964-2
9 sg:pub.10.1007/s00521-016-2325-5
10 sg:pub.10.1007/s00521-016-2418-1
11 sg:pub.10.1007/s40815-016-0160-6
12 https://doi.org/10.1016/j.asoc.2017.05.031
13 https://doi.org/10.1016/j.cose.2008.06.002
14 https://doi.org/10.1016/j.cose.2008.08.003
15 https://doi.org/10.1016/j.ijleo.2013.05.099
16 https://doi.org/10.1016/j.ins.2016.04.019
17 https://doi.org/10.1016/j.jvcir.2012.05.003
18 https://doi.org/10.1016/j.neucom.2012.08.056
19 https://doi.org/10.1016/j.patrec.2004.09.045
20 https://doi.org/10.1016/j.renene.2015.06.034
21 https://doi.org/10.1109/65.283931
22 https://doi.org/10.1109/bigcomp.2017.7881684
23 https://doi.org/10.1109/btas.2014.6996222
24 https://doi.org/10.1109/cisda.2009.5356528
25 https://doi.org/10.1109/confluence.2017.7943121
26 https://doi.org/10.1109/iccv.2013.398
27 https://doi.org/10.1109/icoci.2006.5276609
28 https://doi.org/10.1109/ijcnn.2002.1007774
29 https://doi.org/10.1109/tcyb.2015.2457234
30 https://doi.org/10.1109/tip.2014.2326001
31 https://doi.org/10.1145/1273496.1273592
32 https://doi.org/10.5120/12136-8419
33 https://doi.org/10.5220/0002410804550458
34 schema:datePublished 2019-03-26
35 schema:datePublishedReg 2019-03-26
36 schema:description With the enormous increase in the use of the Internet, secure transfer of data across networks has become a challenging task. Attackers are in continuous search of getting information from network traffic, and this is the main reason that efficient intrusion detection techniques are required to identify different kinds of network attacks. In past, various supervised and semi-supervised methods have been developed for intrusion detection. Most of these methods require a large amount of data to develop an efficient intrusion detection system. In the proposed deep neural network and adaptive self-taught-based transfer learning technique, we have exploited the concept of self-taught learning to train deep neural networks for reliable network intrusion detection. In the proposed method, a pre-trained network on regression-related task is used to extract features from NSL-KDD dataset. Original features along with extracted features from the pre-trained network are then provided as an input to the sparse auto-encoder. Self-taught learning-based extracted features, when concatenated with the original features of NSL-KDD dataset, enhance the performance of the sparse auto-encoder. Performance of self-taught learning-based approach is compared against several techniques using ten independent runs in terms of accuracy, false alarm and detection rate, area under the ROC, and PR curve. It is experimentally observed that the auto-encoder trained on the combined original and extracted features is stable and offers good generalization in comparison with the sparse auto-encoder trained on original features alone.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1104357
41 schema:name Intrusion detection using deep sparse auto-encoder and self-taught learning
42 schema:pagination 1-13
43 schema:productId N14df254654db4d0ba61a5f3ff939177d
44 N85e55fe742184022aa71c3ad55e08f3a
45 N8e34fc3610e047619ab4faeb00d61b5c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113007757
47 https://doi.org/10.1007/s00521-019-04152-6
48 schema:sdDatePublished 2019-04-11T13:10
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ne581bb013a3e40e38d4dd0b7183429e1
51 schema:url https://link.springer.com/10.1007%2Fs00521-019-04152-6
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N14df254654db4d0ba61a5f3ff939177d schema:name doi
56 schema:value 10.1007/s00521-019-04152-6
57 rdf:type schema:PropertyValue
58 N362326c777f944308c31f3e082dabfca schema:affiliation https://www.grid.ac/institutes/grid.420112.4
59 schema:familyName Qureshi
60 schema:givenName Aqsa Saeed
61 rdf:type schema:Person
62 N4e167e4dcd94418ea7d08176e94d29cb schema:affiliation https://www.grid.ac/institutes/grid.420112.4
63 schema:familyName Durad
64 schema:givenName Muhammad Hanif
65 rdf:type schema:Person
66 N5a5ceefbae6e4cb28f7c3ec37dbb07c2 rdf:first Nf1d134e981a84d608a49770dd069bf1b
67 rdf:rest Ne85c79ccaec44720a89ad6ee9a852711
68 N65edd46b78894203a1b89f22fdbebb8a rdf:first N362326c777f944308c31f3e082dabfca
69 rdf:rest N8e5e5f9d7b1c494f881821f277afc021
70 N85e55fe742184022aa71c3ad55e08f3a schema:name readcube_id
71 schema:value 7ed2af27225a7b125c5d3b02e9cf91ea0360c49487628109107bde49987a1a8a
72 rdf:type schema:PropertyValue
73 N8e34fc3610e047619ab4faeb00d61b5c schema:name dimensions_id
74 schema:value pub.1113007757
75 rdf:type schema:PropertyValue
76 N8e5e5f9d7b1c494f881821f277afc021 rdf:first N970092cbe626457784f7b0719b02fbef
77 rdf:rest N5a5ceefbae6e4cb28f7c3ec37dbb07c2
78 N970092cbe626457784f7b0719b02fbef schema:affiliation https://www.grid.ac/institutes/grid.420112.4
79 schema:familyName Khan
80 schema:givenName Asifullah
81 rdf:type schema:Person
82 Ne581bb013a3e40e38d4dd0b7183429e1 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Ne85c79ccaec44720a89ad6ee9a852711 rdf:first N4e167e4dcd94418ea7d08176e94d29cb
85 rdf:rest rdf:nil
86 Nf1d134e981a84d608a49770dd069bf1b schema:affiliation https://www.grid.ac/institutes/grid.420112.4
87 schema:familyName Shamim
88 schema:givenName Nauman
89 rdf:type schema:Person
90 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
91 schema:name Technology
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
94 schema:name Communications Technologies
95 rdf:type schema:DefinedTerm
96 sg:journal.1104357 schema:issn 0941-0643
97 1433-3058
98 schema:name Neural Computing and Applications
99 rdf:type schema:Periodical
100 sg:pub.10.1007/s00521-012-1084-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904676
101 https://doi.org/10.1007/s00521-012-1084-1
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00521-012-1297-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039280626
104 https://doi.org/10.1007/s00521-012-1297-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00521-013-1371-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027070228
107 https://doi.org/10.1007/s00521-013-1371-5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00521-013-1517-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028740616
110 https://doi.org/10.1007/s00521-013-1517-5
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00521-015-1964-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044462211
113 https://doi.org/10.1007/s00521-015-1964-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00521-016-2325-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047379629
116 https://doi.org/10.1007/s00521-016-2325-5
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00521-016-2418-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036201625
119 https://doi.org/10.1007/s00521-016-2418-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s40815-016-0160-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028185957
122 https://doi.org/10.1007/s40815-016-0160-6
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.asoc.2017.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085458319
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cose.2008.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011421860
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.cose.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019426202
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ijleo.2013.05.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009509140
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ins.2016.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035921876
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jvcir.2012.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052663447
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.neucom.2012.08.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052937086
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.patrec.2004.09.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018086054
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.renene.2015.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035086674
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/65.283931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061205431
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/bigcomp.2017.7881684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095599780
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/btas.2014.6996222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093726930
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/cisda.2009.5356528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093696874
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/confluence.2017.7943121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093629042
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/iccv.2013.398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094984030
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icoci.2006.5276609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095169779
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/ijcnn.2002.1007774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095758063
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tcyb.2015.2457234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061580056
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tip.2014.2326001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643978
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/1273496.1273592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052861703
163 rdf:type schema:CreativeWork
164 https://doi.org/10.5120/12136-8419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072594647
165 rdf:type schema:CreativeWork
166 https://doi.org/10.5220/0002410804550458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099487776
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.420112.4 schema:alternateName Pakistan Institute of Engineering and Applied Sciences
169 schema:name Centre for Mathematical Sciences, Pakistan Institute of Engineering and Applied Sciences, 45650, Nilore, Islamabad, Pakistan
170 PR-Lab, Department of Computer and Information Science, Pakistan Institute of Engineering and the Applied Sciences, 45650, Nilore, Islamabad, Pakistan
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...