Ontology type: schema:ScholarlyArticle
2019-03-12
AUTHORSAmmara Mehmood, Naveed Ishtiaq Chaudhary, Aneela Zameer, Muhammad Asif Zahoor Raja
ABSTRACTThe strength of evolutionary computational heuristic paradigms is exploited for parameter estimation of power signal modeling problems by incorporating differential evolution (DE), genetic algorithms (GAs) and pattern search (PS) methodologies. The objective function of power signal harmonics is constructed by utilizing the power of approximation theory in mean squared error sense. The stiff optimization task of signal harmonics is performed with heuristic solvers DE, GAs and PS that provide efficacy, fast convergence rate and avoid getting trapped in local minima. Statistics reveal that DE outperforms its counterparts in terms of accuracy, robustness and complexity measures. More... »
PAGES1-30
http://scigraph.springernature.com/pub.10.1007/s00521-019-04133-9
DOIhttp://dx.doi.org/10.1007/s00521-019-04133-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112703107
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Pakistan Institute of Engineering and Applied Sciences",
"id": "https://www.grid.ac/institutes/grid.420112.4",
"name": [
"Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan"
],
"type": "Organization"
},
"familyName": "Mehmood",
"givenName": "Ammara",
"type": "Person"
},
{
"affiliation": {
"alternateName": "International Islamic University",
"id": "https://www.grid.ac/institutes/grid.411727.6",
"name": [
"Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan"
],
"type": "Organization"
},
"familyName": "Chaudhary",
"givenName": "Naveed Ishtiaq",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Pakistan Institute of Engineering and Applied Sciences",
"id": "https://www.grid.ac/institutes/grid.420112.4",
"name": [
"Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan"
],
"type": "Organization"
},
"familyName": "Zameer",
"givenName": "Aneela",
"type": "Person"
},
{
"affiliation": {
"alternateName": "COMSATS Institute of Information Technology",
"id": "https://www.grid.ac/institutes/grid.418920.6",
"name": [
"Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock, Pakistan"
],
"type": "Organization"
},
"familyName": "Raja",
"givenName": "Muhammad Asif Zahoor",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1080/09540091.2014.907555",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002634454"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijepes.2014.11.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002862118"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/321062.321069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007708110"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mcm.2010.05.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008436889"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.swevo.2016.05.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009776772"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008202821328",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012950914",
"https://doi.org/10.1023/a:1008202821328"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.01.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013852453"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2015.10.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014727621"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijepes.2015.08.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016923645"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40064-016-3093-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018893238",
"https://doi.org/10.1186/s40064-016-3093-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40064-016-3093-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018893238",
"https://doi.org/10.1186/s40064-016-3093-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2016.08.079",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019452042"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.enconman.2016.12.032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019846178"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2016.10.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020432662"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2523-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021110258",
"https://doi.org/10.1007/s00521-016-2523-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2523-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021110258",
"https://doi.org/10.1007/s00521-016-2523-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.01.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022225277"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.96.20.11106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026651083"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijepes.2015.04.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026712852"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.dsp.2015.09.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028995483"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40064-016-3517-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029870125",
"https://doi.org/10.1186/s40064-016-3517-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40064-016-3517-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029870125",
"https://doi.org/10.1186/s40064-016-3517-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00034-016-0378-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031405951",
"https://doi.org/10.1007/s00034-016-0378-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00034-016-0378-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031405951",
"https://doi.org/10.1007/s00034-016-0378-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2677-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035029099",
"https://doi.org/10.1007/s00521-016-2677-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2677-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035029099",
"https://doi.org/10.1007/s00521-016-2677-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2016.12.046",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037014021"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.aml.2013.02.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038916724"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2806-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042383188",
"https://doi.org/10.1007/s00521-016-2806-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijepes.2016.01.047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043486696"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.swevo.2016.01.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043688536"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijepes.2016.05.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048231016"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2016.09.032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050578430"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2016.12.043",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050733693"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2185-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052156617",
"https://doi.org/10.1007/s00521-016-2185-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2185-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052156617",
"https://doi.org/10.1007/s00521-016-2185-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijepes.2015.12.028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053647905"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/iet-spr.2015.0280",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056838666"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tevc.2010.2059031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061605002"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpwrd.2007.893187",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061772291"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpwrd.2015.2422139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061774997"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.01.038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083545048"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-017-2951-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084022536",
"https://doi.org/10.1007/s00521-017-2951-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.02.031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084060125"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.03.028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084060156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.isatra.2017.03.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084083403"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.rser.2017.03.097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084810917"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jhydrol.2017.04.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084865835"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11277-017-4251-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085107665",
"https://doi.org/10.1007/s11277-017-4251-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11277-017-4251-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085107665",
"https://doi.org/10.1007/s11277-017-4251-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.04.048",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085213746"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.06.041",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086145255"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.07.054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090945172"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.sigpro.2017.08.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091088088"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.rser.2017.08.047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091239566"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtice.2017.08.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091402133"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.08.024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091407670"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejor.2017.09.034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091976551"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijepes.2017.09.033",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092057338"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-017-3214-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092211980",
"https://doi.org/10.1007/s00521-017-3214-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.dsp.2017.10.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092413923"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/3904",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098876945"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.12.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099916514"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2017.12.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099916514"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.5011727",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100172624"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13662-017-1461-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100302329",
"https://doi.org/10.1186/s13662-017-1461-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2018.02.024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101146054"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2018.02.024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101146054"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jsv.2018.02.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101180771"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2018.02.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101210847"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2018.02.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101210847"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1631/fitee.1601028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103474619",
"https://doi.org/10.1631/fitee.1601028"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03-12",
"datePublishedReg": "2019-03-12",
"description": "The strength of evolutionary computational heuristic paradigms is exploited for parameter estimation of power signal modeling problems by incorporating differential evolution (DE), genetic algorithms (GAs) and pattern search (PS) methodologies. The objective function of power signal harmonics is constructed by utilizing the power of approximation theory in mean squared error sense. The stiff optimization task of signal harmonics is performed with heuristic solvers DE, GAs and PS that provide efficacy, fast convergence rate and avoid getting trapped in local minima. Statistics reveal that DE outperforms its counterparts in terms of accuracy, robustness and complexity measures.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00521-019-04133-9",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1104357",
"issn": [
"0941-0643",
"1433-3058"
],
"name": "Neural Computing and Applications",
"type": "Periodical"
}
],
"name": "Novel computing paradigms for parameter estimation in power signal models",
"pagination": "1-30",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"12038addd81ca23d259df96b43dfc958326a749d5a2634b2542e0254d754d4eb"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00521-019-04133-9"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112703107"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00521-019-04133-9",
"https://app.dimensions.ai/details/publication/pub.1112703107"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T11:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127427_00000011.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00521-019-04133-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04133-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04133-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04133-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04133-9'
This table displays all metadata directly associated to this object as RDF triples.
278 TRIPLES
21 PREDICATES
86 URIs
16 LITERALS
5 BLANK NODES