Analysis of Boolean functions based on interaction graphs and their influence in system biology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-02

AUTHORS

Ranjeet Kumar Rout, Santi P. Maity, Pabitra Pal Choudhury, Jayanta Kumar Das, Sk. Sarif Hassan, Hari Mohan Pandey

ABSTRACT

Biological regulatory network can be modeled through a set of Boolean functions. These set of functions enable graph representation of the network structure, and hence, the dynamics of the network can be seen easily. In this article, the regulations of such network have been explored in terms of interaction graph. With the help of Boolean function decomposition, this work presents an approach for construction of interaction graphs. This decomposition technique is also used to reduce the network state space of the cell cycle network of fission yeast for finding the singleton attractors. Some special classes of Boolean functions with respect to the interaction graphs have been discussed. A unique recursive procedure is devised which uses the Cartesian product of sets starting from the set of one-variable Boolean function. Interaction graphs generated with these Boolean functions have only positive/negative edges, and the corresponding state spaces have periodic attractors with length one/two. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-019-04102-2

DOI

http://dx.doi.org/10.1007/s00521-019-04102-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112504619


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Maulana Azad National Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.419487.7", 
          "name": [
            "Department of Computer Science and Engineering, National Institute of Technology, Srinagar, 190006, Hazratbal, Jammu & Kashmir, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rout", 
        "givenName": "Ranjeet Kumar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Engineering Science and Technology, Shibpur", 
          "id": "https://www.grid.ac/institutes/grid.440667.7", 
          "name": [
            "Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, 711103, Howrah, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maity", 
        "givenName": "Santi P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, 700108, Kolkata, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choudhury", 
        "givenName": "Pabitra Pal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, 700108, Kolkata, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Jayanta Kumar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vidyasagar University", 
          "id": "https://www.grid.ac/institutes/grid.412834.8", 
          "name": [
            "Department of Mathematics, Pingla Thana Mahavidyalaya Vidyasagar University Maligram, 721140, West Midnapore, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassan", 
        "givenName": "Sk. Sarif", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Edge Hill University", 
          "id": "https://www.grid.ac/institutes/grid.255434.1", 
          "name": [
            "Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandey", 
        "givenName": "Hari Mohan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jtbi.2005.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002431406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2011.08.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003988435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.01473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012361654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207160.2014.975418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016177853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018062208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/270424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020170098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.entcs.2012.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021700529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207160.2010.547193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023243056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(69)90015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023348122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2016.1212433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023836258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00344-006-0068-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025761898", 
          "https://doi.org/10.1007/s00344-006-0068-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001099900023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027676634", 
          "https://doi.org/10.1007/s001099900023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207160.2012.687726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028200458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aam.2007.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029797351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb.2015.0089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031500082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(03)00061-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032335753", 
          "https://doi.org/10.1016/s0092-8240(03)00061-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2013.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033118920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbm028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033896406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207729108910682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036592039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207160.2013.808741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037698186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90174-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042198933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90174-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042198933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044128052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044189257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207720903144560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044408539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(73)90208-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044522507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-07953-0_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044608893", 
          "https://doi.org/10.1007/978-3-319-07953-0_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0007992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047040541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4682-3-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050664698", 
          "https://doi.org/10.1186/1742-4682-3-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.021725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051645237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052111706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0305937101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053209982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb.2008.0173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb.2008.0173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1345725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057697163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2010.2043294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061477555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2016.2544344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061655823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2106512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1119959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/13090537x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127403006765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062953956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/annotation/a0e06cef-a7e4-4ec9-9f35-9df5e50bf7a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065268729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074726142", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078913460", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2017.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090384363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.23919/chicc.2017.8027551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094803116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/chinacom.2009.5339812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095652638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphys.2018.00586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104261187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-018-9716-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107849109", 
          "https://doi.org/10.1007/s11047-018-9716-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-02", 
    "datePublishedReg": "2019-03-02", 
    "description": "Biological regulatory network can be modeled through a set of Boolean functions. These set of functions enable graph representation of the network structure, and hence, the dynamics of the network can be seen easily. In this article, the regulations of such network have been explored in terms of interaction graph. With the help of Boolean function decomposition, this work presents an approach for construction of interaction graphs. This decomposition technique is also used to reduce the network state space of the cell cycle network of fission yeast for finding the singleton attractors. Some special classes of Boolean functions with respect to the interaction graphs have been discussed. A unique recursive procedure is devised which uses the Cartesian product of sets starting from the set of one-variable Boolean function. Interaction graphs generated with these Boolean functions have only positive/negative edges, and the corresponding state spaces have periodic attractors with length one/two.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-019-04102-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Analysis of Boolean functions based on interaction graphs and their influence in system biology", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "74b6c2682f570815c9709a1c3e7d19b5db3613bfbc572b80d59125b04e0eb3ec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-019-04102-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112504619"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-019-04102-2", 
      "https://app.dimensions.ai/details/publication/pub.1112504619"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77579_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-019-04102-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04102-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04102-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04102-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04102-2'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      72 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-019-04102-2 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N8d01592b07764d27b8625039ea9538ec
4 schema:citation sg:pub.10.1007/978-3-319-07953-0_19
5 sg:pub.10.1007/s001099900023
6 sg:pub.10.1007/s00344-006-0068-8
7 sg:pub.10.1007/s11047-018-9716-8
8 sg:pub.10.1016/s0092-8240(03)00061-2
9 sg:pub.10.1186/1742-4682-3-13
10 https://app.dimensions.ai/details/publication/pub.1074726142
11 https://app.dimensions.ai/details/publication/pub.1078913460
12 https://doi.org/10.1016/0022-5193(69)90015-0
13 https://doi.org/10.1016/0022-5193(73)90208-7
14 https://doi.org/10.1016/0167-2789(90)90174-n
15 https://doi.org/10.1016/j.aam.2007.11.003
16 https://doi.org/10.1016/j.compbiomed.2013.07.008
17 https://doi.org/10.1016/j.compbiomed.2014.02.011
18 https://doi.org/10.1016/j.compbiomed.2014.04.010
19 https://doi.org/10.1016/j.compbiomed.2017.07.005
20 https://doi.org/10.1016/j.entcs.2012.05.017
21 https://doi.org/10.1016/j.jtbi.2005.03.015
22 https://doi.org/10.1016/j.jtbi.2011.08.042
23 https://doi.org/10.1049/iet-syb.2008.0173
24 https://doi.org/10.1049/iet-syb.2015.0089
25 https://doi.org/10.1063/1.1345725
26 https://doi.org/10.1073/pnas.0305937101
27 https://doi.org/10.1080/00207160.2010.547193
28 https://doi.org/10.1080/00207160.2012.687726
29 https://doi.org/10.1080/00207160.2013.808741
30 https://doi.org/10.1080/00207160.2014.975418
31 https://doi.org/10.1080/00207720903144560
32 https://doi.org/10.1080/00207721.2016.1212433
33 https://doi.org/10.1080/00207729108910682
34 https://doi.org/10.1093/bib/bbm028
35 https://doi.org/10.1093/bioinformatics/bti664
36 https://doi.org/10.1105/tpc.104.021725
37 https://doi.org/10.1109/chinacom.2009.5339812
38 https://doi.org/10.1109/tac.2010.2043294
39 https://doi.org/10.1109/tit.2016.2544344
40 https://doi.org/10.1109/tnn.2011.2106512
41 https://doi.org/10.1126/science.1119959
42 https://doi.org/10.1137/13090537x
43 https://doi.org/10.1142/s0218127403006765
44 https://doi.org/10.1155/2013/270424
45 https://doi.org/10.1242/jcs.01473
46 https://doi.org/10.1371/annotation/a0e06cef-a7e4-4ec9-9f35-9df5e50bf7a2
47 https://doi.org/10.1371/journal.pcbi.0030129
48 https://doi.org/10.1371/journal.pone.0001672
49 https://doi.org/10.1371/journal.pone.0007992
50 https://doi.org/10.23919/chicc.2017.8027551
51 https://doi.org/10.3389/fphys.2018.00586
52 schema:datePublished 2019-03-02
53 schema:datePublishedReg 2019-03-02
54 schema:description Biological regulatory network can be modeled through a set of Boolean functions. These set of functions enable graph representation of the network structure, and hence, the dynamics of the network can be seen easily. In this article, the regulations of such network have been explored in terms of interaction graph. With the help of Boolean function decomposition, this work presents an approach for construction of interaction graphs. This decomposition technique is also used to reduce the network state space of the cell cycle network of fission yeast for finding the singleton attractors. Some special classes of Boolean functions with respect to the interaction graphs have been discussed. A unique recursive procedure is devised which uses the Cartesian product of sets starting from the set of one-variable Boolean function. Interaction graphs generated with these Boolean functions have only positive/negative edges, and the corresponding state spaces have periodic attractors with length one/two.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf sg:journal.1104357
59 schema:name Analysis of Boolean functions based on interaction graphs and their influence in system biology
60 schema:pagination 1-19
61 schema:productId N2761c0f081c7441eb9fabc67eae786c9
62 N5eca990c2ddc46e589fba74890d2b8b0
63 Naffad3707a7c4d7fa449bde2c4c3b70d
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504619
65 https://doi.org/10.1007/s00521-019-04102-2
66 schema:sdDatePublished 2019-04-11T10:50
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N3e5ff2b859ef4d0782c97a8cee8345b6
69 schema:url https://link.springer.com/10.1007%2Fs00521-019-04102-2
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N19ab141924044f2e9c5a8800cc67c00e schema:affiliation https://www.grid.ac/institutes/grid.39953.35
74 schema:familyName Choudhury
75 schema:givenName Pabitra Pal
76 rdf:type schema:Person
77 N19c1bff037f2438e99af4ae6944ee218 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
78 schema:familyName Das
79 schema:givenName Jayanta Kumar
80 rdf:type schema:Person
81 N2761c0f081c7441eb9fabc67eae786c9 schema:name doi
82 schema:value 10.1007/s00521-019-04102-2
83 rdf:type schema:PropertyValue
84 N37625aa6388f4b728fc7efa844919bd9 schema:affiliation https://www.grid.ac/institutes/grid.412834.8
85 schema:familyName Hassan
86 schema:givenName Sk. Sarif
87 rdf:type schema:Person
88 N3e5ff2b859ef4d0782c97a8cee8345b6 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N4cfdc9363ad14d2c85d380fbf9023a49 rdf:first N19c1bff037f2438e99af4ae6944ee218
91 rdf:rest N5a41391e390242f1af493ad2073b6159
92 N4e52370df345482bba8e4fb5b401b67f rdf:first Nac233f4262184a0b8214e88b370caa61
93 rdf:rest rdf:nil
94 N5a41391e390242f1af493ad2073b6159 rdf:first N37625aa6388f4b728fc7efa844919bd9
95 rdf:rest N4e52370df345482bba8e4fb5b401b67f
96 N5eca990c2ddc46e589fba74890d2b8b0 schema:name readcube_id
97 schema:value 74b6c2682f570815c9709a1c3e7d19b5db3613bfbc572b80d59125b04e0eb3ec
98 rdf:type schema:PropertyValue
99 N5f227b87750945c6b877ccb7321900b3 schema:affiliation https://www.grid.ac/institutes/grid.440667.7
100 schema:familyName Maity
101 schema:givenName Santi P.
102 rdf:type schema:Person
103 N7d35f1064d1d4caa8c3c8c04ab1e0ed3 schema:affiliation https://www.grid.ac/institutes/grid.419487.7
104 schema:familyName Rout
105 schema:givenName Ranjeet Kumar
106 rdf:type schema:Person
107 N8825c74015684bb1b27301897695647a rdf:first N19ab141924044f2e9c5a8800cc67c00e
108 rdf:rest N4cfdc9363ad14d2c85d380fbf9023a49
109 N8af2d014ee7c41cfa1b7cee1d26a9bbb rdf:first N5f227b87750945c6b877ccb7321900b3
110 rdf:rest N8825c74015684bb1b27301897695647a
111 N8d01592b07764d27b8625039ea9538ec rdf:first N7d35f1064d1d4caa8c3c8c04ab1e0ed3
112 rdf:rest N8af2d014ee7c41cfa1b7cee1d26a9bbb
113 Nac233f4262184a0b8214e88b370caa61 schema:affiliation https://www.grid.ac/institutes/grid.255434.1
114 schema:familyName Pandey
115 schema:givenName Hari Mohan
116 rdf:type schema:Person
117 Naffad3707a7c4d7fa449bde2c4c3b70d schema:name dimensions_id
118 schema:value pub.1112504619
119 rdf:type schema:PropertyValue
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biochemistry and Cell Biology
125 rdf:type schema:DefinedTerm
126 sg:journal.1104357 schema:issn 0941-0643
127 1433-3058
128 schema:name Neural Computing and Applications
129 rdf:type schema:Periodical
130 sg:pub.10.1007/978-3-319-07953-0_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044608893
131 https://doi.org/10.1007/978-3-319-07953-0_19
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s001099900023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027676634
134 https://doi.org/10.1007/s001099900023
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00344-006-0068-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025761898
137 https://doi.org/10.1007/s00344-006-0068-8
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11047-018-9716-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849109
140 https://doi.org/10.1007/s11047-018-9716-8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1016/s0092-8240(03)00061-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032335753
143 https://doi.org/10.1016/s0092-8240(03)00061-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1742-4682-3-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050664698
146 https://doi.org/10.1186/1742-4682-3-13
147 rdf:type schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1074726142 schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1078913460 schema:CreativeWork
150 https://doi.org/10.1016/0022-5193(69)90015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023348122
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0022-5193(73)90208-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522507
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0167-2789(90)90174-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1042198933
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.aam.2007.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029797351
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.compbiomed.2013.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033118920
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.compbiomed.2014.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044128052
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.compbiomed.2014.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052111706
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.compbiomed.2017.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090384363
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.entcs.2012.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021700529
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jtbi.2005.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002431406
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jtbi.2011.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003988435
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1049/iet-syb.2008.0173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056838924
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1049/iet-syb.2015.0089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031500082
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.1345725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697163
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.0305937101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053209982
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/00207160.2010.547193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023243056
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/00207160.2012.687726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028200458
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/00207160.2013.808741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698186
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/00207160.2014.975418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016177853
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/00207720903144560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044408539
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1080/00207721.2016.1212433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023836258
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/00207729108910682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036592039
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bib/bbm028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033896406
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/bti664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018062208
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1105/tpc.104.021725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051645237
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/chinacom.2009.5339812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095652638
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/tac.2010.2043294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061477555
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/tit.2016.2544344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061655823
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tnn.2011.2106512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717841
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1119959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452739
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1137/13090537x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870357
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1142/s0218127403006765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953956
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1155/2013/270424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020170098
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1242/jcs.01473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012361654
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/annotation/a0e06cef-a7e4-4ec9-9f35-9df5e50bf7a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065268729
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1371/journal.pcbi.0030129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044189257
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pone.0001672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553048
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pone.0007992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047040541
225 rdf:type schema:CreativeWork
226 https://doi.org/10.23919/chicc.2017.8027551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094803116
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3389/fphys.2018.00586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104261187
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.255434.1 schema:alternateName Edge Hill University
231 schema:name Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, UK
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
234 schema:name Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, 700108, Kolkata, West Bengal, India
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.412834.8 schema:alternateName Vidyasagar University
237 schema:name Department of Mathematics, Pingla Thana Mahavidyalaya Vidyasagar University Maligram, 721140, West Midnapore, West Bengal, India
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.419487.7 schema:alternateName Maulana Azad National Institute of Technology
240 schema:name Department of Computer Science and Engineering, National Institute of Technology, Srinagar, 190006, Hazratbal, Jammu & Kashmir, India
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.440667.7 schema:alternateName Indian Institute of Engineering Science and Technology, Shibpur
243 schema:name Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, 711103, Howrah, West Bengal, India
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...