Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface View Full Text


Ontology type: schema:ScholarlyArticle     

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-019-04100-4

DOI

http://dx.doi.org/10.1007/s00521-019-04100-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113283340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Hashim", 
        "type": "Person"
      }, 
      {
        "familyName": "Hamid", 
        "givenName": "Aamir", 
        "type": "Person"
      }, 
      {
        "familyName": "Khan", 
        "givenName": "Masood", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00521-016-2688-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001014436", 
          "https://doi.org/10.1007/s00521-016-2688-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2688-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001014436", 
          "https://doi.org/10.1007/s00521-016-2688-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2187-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003719513", 
          "https://doi.org/10.1007/s00521-016-2187-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2187-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003719513", 
          "https://doi.org/10.1007/s00521-016-2187-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2009.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003961151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2014.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010277064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2012.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013705469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3329/jname.v9i2.12541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3329/jname.v9i2.12541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015378220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002310050217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016377665", 
          "https://doi.org/10.1007/s002310050217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.02.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016514032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2963/jjtp.7.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020649950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.12.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020812968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2013.12.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.04.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033839465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034191408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00986440903359087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035370094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-011-0816-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037479982", 
          "https://doi.org/10.1007/s00231-011-0816-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1341218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3247387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062112147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085961451"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-05", 
    "datePublishedReg": "2019-04-05", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-019-04100-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-019-04100-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113283340"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-019-04100-4", 
      "https://app.dimensions.ai/details/publication/pub.1113283340"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117100_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00521-019-04100-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04100-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04100-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04100-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04100-4'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      18 PREDICATES      39 URIs      13 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-019-04100-4 schema:author N6e62e2b006f24f208d0a62944ef1dddb
2 schema:citation sg:pub.10.1007/s00231-011-0816-6
3 sg:pub.10.1007/s002310050217
4 sg:pub.10.1007/s00521-016-2187-x
5 sg:pub.10.1007/s00521-016-2688-7
6 https://doi.org/10.1016/j.aej.2014.05.002
7 https://doi.org/10.1016/j.amc.2012.07.002
8 https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
9 https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.049
10 https://doi.org/10.1016/j.ijthermalsci.2009.07.015
11 https://doi.org/10.1016/j.molliq.2016.02.071
12 https://doi.org/10.1016/j.molliq.2016.04.108
13 https://doi.org/10.1016/j.powtec.2013.12.042
14 https://doi.org/10.1016/j.powtec.2014.12.035
15 https://doi.org/10.1016/j.powtec.2017.06.018
16 https://doi.org/10.1063/1.1341218
17 https://doi.org/10.1080/00986440903359087
18 https://doi.org/10.1115/1.2150834
19 https://doi.org/10.1115/1.3247387
20 https://doi.org/10.2963/jjtp.7.227
21 https://doi.org/10.3329/jname.v9i2.12541
22 schema:datePublished 2019-04-05
23 schema:datePublishedReg 2019-04-05
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf sg:journal.1104357
28 schema:name Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface
29 schema:productId N77cbc53f531e4ecab4b511b2d3a2143d
30 Nceb39cd49e32449f9cb9a4636a492902
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113283340
32 https://doi.org/10.1007/s00521-019-04100-4
33 schema:sdDatePublished 2019-04-11T14:18
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N3c70cbd63b804473a6faf1bc14dc4778
36 schema:url http://link.springer.com/10.1007/s00521-019-04100-4
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N082d09df312c4212ad5e4c77cfa254fa schema:familyName Hashim
41 rdf:type schema:Person
42 N0b694597d72e4c858b788b5b06ea19fe schema:familyName Khan
43 schema:givenName Masood
44 rdf:type schema:Person
45 N3c70cbd63b804473a6faf1bc14dc4778 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N6af23b2abc77473293a19d9f85ee6fc0 schema:familyName Hamid
48 schema:givenName Aamir
49 rdf:type schema:Person
50 N6e62e2b006f24f208d0a62944ef1dddb rdf:first N082d09df312c4212ad5e4c77cfa254fa
51 rdf:rest N7d6c6c1c60fd4896a5cebb0f3f6a8f5e
52 N77cbc53f531e4ecab4b511b2d3a2143d schema:name dimensions_id
53 schema:value pub.1113283340
54 rdf:type schema:PropertyValue
55 N7d6c6c1c60fd4896a5cebb0f3f6a8f5e rdf:first N6af23b2abc77473293a19d9f85ee6fc0
56 rdf:rest Nfa4cff45a9b74abd93236841e25636d3
57 Nceb39cd49e32449f9cb9a4636a492902 schema:name doi
58 schema:value 10.1007/s00521-019-04100-4
59 rdf:type schema:PropertyValue
60 Nfa4cff45a9b74abd93236841e25636d3 rdf:first N0b694597d72e4c858b788b5b06ea19fe
61 rdf:rest rdf:nil
62 sg:journal.1104357 schema:issn 0941-0643
63 1433-3058
64 schema:name Neural Computing and Applications
65 rdf:type schema:Periodical
66 sg:pub.10.1007/s00231-011-0816-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037479982
67 https://doi.org/10.1007/s00231-011-0816-6
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/s002310050217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016377665
70 https://doi.org/10.1007/s002310050217
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/s00521-016-2187-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003719513
73 https://doi.org/10.1007/s00521-016-2187-x
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/s00521-016-2688-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001014436
76 https://doi.org/10.1007/s00521-016-2688-7
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/j.aej.2014.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010277064
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/j.amc.2012.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013705469
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034191408
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015378220
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.ijthermalsci.2009.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003961151
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.molliq.2016.02.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016514032
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.molliq.2016.04.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033839465
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.powtec.2013.12.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022025715
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.powtec.2014.12.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020812968
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.powtec.2017.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085961451
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.1341218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696715
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1080/00986440903359087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035370094
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1115/1.3247387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112147
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2963/jjtp.7.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020649950
107 rdf:type schema:CreativeWork
108 https://doi.org/10.3329/jname.v9i2.12541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242691
109 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...