Design issues in Time Series dataset balancing algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-22

AUTHORS

Enrique A. de la Cal, José R. Villar, Paula M. Vergara, Álvaro Herrero, Javier Sedano

ABSTRACT

Nowadays, the Internet of Things and the e-Health are producing huge collections of Time Series that are analyzed in order to classify current status or to detect certain events, among others. In two-class problems, when the positive events to detect are infrequent, the gathered data lack balance. Even in unsupervised learning, this imbalance causes models to decrease their generalization capability. In order to solve such problem, Time Series balancing algorithms have been proposed. Time Series balancing algorithms have barely been studied; the different approaches make use of either a single bag of Time Series extracting some of them in order to generate a synthetic new one or ghost points in the distance space. These solutions are suitable when there is one only data source and they are univariate datasets. However, in the context of the Internet of Things, where multiple data sources are available, these approaches may not perform coherently. Besides, up to our knowledge there is not multiple datasources and multivariate TS balancing algorithms in the literature. In this research, we study two main concerns that should be considered when designing balancing Time Series algorithms: on the one hand, the TS balancing algorithms should deal with multiple multivariate data sources; on the other hand, the balancing algorithms should be shape preserving. A new algorithm is proposed for balancing multivariate Time Series datasets, as part of our work. A complete evaluation of the algorithm is performed dealing with two real-world multivariate Time Series datasets coming from the e-Health domain: one about epilepsy crisis identification and the other on fall detection. A thorough analysis of the performance is discussed, showing the advantages of considering the Time Series issues within the balancing algorithm. More... »

PAGES

1-18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-019-04011-4

DOI

http://dx.doi.org/10.1007/s00521-019-04011-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111602742


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Computer Science Department, University of Oviedo, EIMEM, 33004, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de la Cal", 
        "givenName": "Enrique A.", 
        "id": "sg:person.016056436767.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Computer Science Department, University of Oviedo, EIMEM, 33004, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villar", 
        "givenName": "Jos\u00e9 R.", 
        "id": "sg:person.015655732472.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Computer Science Department, University of Oviedo, EIMEM, 33004, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vergara", 
        "givenName": "Paula M.", 
        "id": "sg:person.010410676561.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410676561.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgos", 
          "id": "https://www.grid.ac/institutes/grid.23520.36", 
          "name": [
            "Civil Engineering Department, University of Burgos, EPS, 09006, Burgos, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrero", 
        "givenName": "\u00c1lvaro", 
        "id": "sg:person.01050345762.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050345762.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological Institute of Castilla y Le\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.493418.3", 
          "name": [
            "Instituto Tecnol\u00f3gico de Castilla y Le\u00f3n, 09001, Burgos, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedano", 
        "givenName": "Javier", 
        "id": "sg:person.012345130667.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/0-387-25465-x_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002223585", 
          "https://doi.org/10.1007/0-387-25465-x_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2247-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008916371", 
          "https://doi.org/10.1007/s00521-016-2247-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2247-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008916371", 
          "https://doi.org/10.1007/s00521-016-2247-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/13802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017876154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023432348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027681220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2012.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028283360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85836-2_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029794564", 
          "https://doi.org/10.1007/978-3-540-85836-2_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jal.2016.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031176003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1007730.1007735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037852366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009869804967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038713088", 
          "https://doi.org/10.1023/a:1009869804967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/epi.12120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041433368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042192423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-014-0349-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047800437", 
          "https://doi.org/10.1007/s10618-014-0349-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0310-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050073691", 
          "https://doi.org/10.1007/s10115-010-0310-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355744.355745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051377384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2011.2171973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065714500361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065716500374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3087-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090379625", 
          "https://doi.org/10.1007/s00521-017-3087-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3087-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090379625", 
          "https://doi.org/10.1007/s00521-017-3087-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3087-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090379625", 
          "https://doi.org/10.1007/s00521-017-3087-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3087-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090379625", 
          "https://doi.org/10.1007/s00521-017-3087-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2017.06.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090655356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itab.2008.4570642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093526976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101330895", 
          "https://doi.org/10.1007/s00521-018-3407-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101330895", 
          "https://doi.org/10.1007/s00521-018-3407-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101330895", 
          "https://doi.org/10.1007/s00521-018-3407-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3437-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101635367", 
          "https://doi.org/10.1007/s00521-018-3437-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3437-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101635367", 
          "https://doi.org/10.1007/s00521-018-3437-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3437-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101635367", 
          "https://doi.org/10.1007/s00521-018-3437-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s18051350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103664416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579550"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-22", 
    "datePublishedReg": "2019-01-22", 
    "description": "Nowadays, the Internet of Things and the e-Health are producing huge collections of Time Series that are analyzed in order to classify current status or to detect certain events, among others. In two-class problems, when the positive events to detect are infrequent, the gathered data lack balance. Even in unsupervised learning, this imbalance causes models to decrease their generalization capability. In order to solve such problem, Time Series balancing algorithms have been proposed. Time Series balancing algorithms have barely been studied; the different approaches make use of either a single bag of Time Series extracting some of them in order to generate a synthetic new one or ghost points in the distance space. These solutions are suitable when there is one only data source and they are univariate datasets. However, in the context of the Internet of Things, where multiple data sources are available, these approaches may not perform coherently. Besides, up to our knowledge there is not multiple datasources and multivariate TS balancing algorithms in the literature. In this research, we study two main concerns that should be considered when designing balancing Time Series algorithms: on the one hand, the TS balancing algorithms should deal with multiple multivariate data sources; on the other hand, the balancing algorithms should be shape preserving. A new algorithm is proposed for balancing multivariate Time Series datasets, as part of our work. A complete evaluation of the algorithm is performed dealing with two real-world multivariate Time Series datasets coming from the e-Health domain: one about epilepsy crisis identification and the other on fall detection. A thorough analysis of the performance is discussed, showing the advantages of considering the Time Series issues within the balancing algorithm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-019-04011-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Design issues in Time Series dataset balancing algorithms", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "46c0a6ad83cf44e4737b992316f409ea77dc24885fd2c27a35933e68620cf103"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-019-04011-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111602742"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-019-04011-4", 
      "https://app.dimensions.ai/details/publication/pub.1111602742"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100819_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-019-04011-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04011-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04011-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04011-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-019-04011-4'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      49 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-019-04011-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6c71e3e39196498ca46f91bad1435439
4 schema:citation sg:pub.10.1007/0-387-25465-x_40
5 sg:pub.10.1007/978-3-540-85836-2_27
6 sg:pub.10.1007/s00521-016-2247-2
7 sg:pub.10.1007/s00521-017-3087-4
8 sg:pub.10.1007/s00521-018-3407-3
9 sg:pub.10.1007/s00521-018-3437-x
10 sg:pub.10.1007/s10115-010-0310-3
11 sg:pub.10.1007/s10618-014-0349-y
12 sg:pub.10.1023/a:1009869804967
13 https://doi.org/10.1016/j.engappai.2010.09.007
14 https://doi.org/10.1016/j.jal.2016.11.024
15 https://doi.org/10.1016/j.knosys.2012.08.025
16 https://doi.org/10.1016/j.patcog.2013.05.006
17 https://doi.org/10.1016/j.patcog.2016.03.012
18 https://doi.org/10.1016/j.procs.2017.06.110
19 https://doi.org/10.1109/itab.2008.4570642
20 https://doi.org/10.1109/tfuzz.2011.2171973
21 https://doi.org/10.1111/epi.12120
22 https://doi.org/10.1142/s0129065714500361
23 https://doi.org/10.1142/s0129065716500374
24 https://doi.org/10.1145/1007730.1007735
25 https://doi.org/10.1145/355744.355745
26 https://doi.org/10.1613/jair.953
27 https://doi.org/10.3390/s18051350
28 https://doi.org/10.5772/13802
29 schema:datePublished 2019-01-22
30 schema:datePublishedReg 2019-01-22
31 schema:description Nowadays, the Internet of Things and the e-Health are producing huge collections of Time Series that are analyzed in order to classify current status or to detect certain events, among others. In two-class problems, when the positive events to detect are infrequent, the gathered data lack balance. Even in unsupervised learning, this imbalance causes models to decrease their generalization capability. In order to solve such problem, Time Series balancing algorithms have been proposed. Time Series balancing algorithms have barely been studied; the different approaches make use of either a single bag of Time Series extracting some of them in order to generate a synthetic new one or ghost points in the distance space. These solutions are suitable when there is one only data source and they are univariate datasets. However, in the context of the Internet of Things, where multiple data sources are available, these approaches may not perform coherently. Besides, up to our knowledge there is not multiple datasources and multivariate TS balancing algorithms in the literature. In this research, we study two main concerns that should be considered when designing balancing Time Series algorithms: on the one hand, the TS balancing algorithms should deal with multiple multivariate data sources; on the other hand, the balancing algorithms should be shape preserving. A new algorithm is proposed for balancing multivariate Time Series datasets, as part of our work. A complete evaluation of the algorithm is performed dealing with two real-world multivariate Time Series datasets coming from the e-Health domain: one about epilepsy crisis identification and the other on fall detection. A thorough analysis of the performance is discussed, showing the advantages of considering the Time Series issues within the balancing algorithm.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1104357
36 schema:name Design issues in Time Series dataset balancing algorithms
37 schema:pagination 1-18
38 schema:productId N51fea9108e2846a386504cf43c9fc679
39 N5f792424aed7488ea8d7614dded03424
40 Nfa76242cf32f4a72b17640e4b92796fe
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111602742
42 https://doi.org/10.1007/s00521-019-04011-4
43 schema:sdDatePublished 2019-04-11T08:57
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N01eb19f70f6c422eb7f25164c430c2c0
46 schema:url https://link.springer.com/10.1007%2Fs00521-019-04011-4
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N01eb19f70f6c422eb7f25164c430c2c0 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N0978cd1b64d741bbb837799f1271dfbe rdf:first sg:person.01050345762.19
53 rdf:rest N7af8e42fd08b483fbcc026c2e3a17ba0
54 N3eb35502305a4b85bb0442b3111d1ff3 rdf:first sg:person.015655732472.57
55 rdf:rest Nc61ba44c63db4295887c1f5096d331a3
56 N51fea9108e2846a386504cf43c9fc679 schema:name dimensions_id
57 schema:value pub.1111602742
58 rdf:type schema:PropertyValue
59 N5f792424aed7488ea8d7614dded03424 schema:name readcube_id
60 schema:value 46c0a6ad83cf44e4737b992316f409ea77dc24885fd2c27a35933e68620cf103
61 rdf:type schema:PropertyValue
62 N6c71e3e39196498ca46f91bad1435439 rdf:first sg:person.016056436767.91
63 rdf:rest N3eb35502305a4b85bb0442b3111d1ff3
64 N7af8e42fd08b483fbcc026c2e3a17ba0 rdf:first sg:person.012345130667.82
65 rdf:rest rdf:nil
66 Nc61ba44c63db4295887c1f5096d331a3 rdf:first sg:person.010410676561.23
67 rdf:rest N0978cd1b64d741bbb837799f1271dfbe
68 Nfa76242cf32f4a72b17640e4b92796fe schema:name doi
69 schema:value 10.1007/s00521-019-04011-4
70 rdf:type schema:PropertyValue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1104357 schema:issn 0941-0643
78 1433-3058
79 schema:name Neural Computing and Applications
80 rdf:type schema:Periodical
81 sg:person.010410676561.23 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
82 schema:familyName Vergara
83 schema:givenName Paula M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410676561.23
85 rdf:type schema:Person
86 sg:person.01050345762.19 schema:affiliation https://www.grid.ac/institutes/grid.23520.36
87 schema:familyName Herrero
88 schema:givenName Álvaro
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050345762.19
90 rdf:type schema:Person
91 sg:person.012345130667.82 schema:affiliation https://www.grid.ac/institutes/grid.493418.3
92 schema:familyName Sedano
93 schema:givenName Javier
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82
95 rdf:type schema:Person
96 sg:person.015655732472.57 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
97 schema:familyName Villar
98 schema:givenName José R.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57
100 rdf:type schema:Person
101 sg:person.016056436767.91 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
102 schema:familyName de la Cal
103 schema:givenName Enrique A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91
105 rdf:type schema:Person
106 sg:pub.10.1007/0-387-25465-x_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002223585
107 https://doi.org/10.1007/0-387-25465-x_40
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-540-85836-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029794564
110 https://doi.org/10.1007/978-3-540-85836-2_27
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00521-016-2247-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008916371
113 https://doi.org/10.1007/s00521-016-2247-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00521-017-3087-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090379625
116 https://doi.org/10.1007/s00521-017-3087-4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00521-018-3407-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101330895
119 https://doi.org/10.1007/s00521-018-3407-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00521-018-3437-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101635367
122 https://doi.org/10.1007/s00521-018-3437-x
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10115-010-0310-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050073691
125 https://doi.org/10.1007/s10115-010-0310-3
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10618-014-0349-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047800437
128 https://doi.org/10.1007/s10618-014-0349-y
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1009869804967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038713088
131 https://doi.org/10.1023/a:1009869804967
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.engappai.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023432348
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jal.2016.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031176003
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.knosys.2012.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028283360
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.patcog.2013.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042192423
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.patcog.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027681220
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.procs.2017.06.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090655356
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/itab.2008.4570642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093526976
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tfuzz.2011.2171973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606512
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/epi.12120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041433368
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1142/s0129065714500361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899424
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1142/s0129065716500374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899509
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/1007730.1007735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852366
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/355744.355745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051377384
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1613/jair.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579550
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3390/s18051350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103664416
162 rdf:type schema:CreativeWork
163 https://doi.org/10.5772/13802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017876154
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
166 schema:name Computer Science Department, University of Oviedo, EIMEM, 33004, Oviedo, Spain
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.23520.36 schema:alternateName University of Burgos
169 schema:name Civil Engineering Department, University of Burgos, EPS, 09006, Burgos, Spain
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.493418.3 schema:alternateName Technological Institute of Castilla y León
172 schema:name Instituto Tecnológico de Castilla y León, 09001, Burgos, Spain
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...