Supplier selection based on normal process yield: the Bayesian inference View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-18

AUTHORS

Mou-Yuan Liao, Chien-Wei Wu

ABSTRACT

Due to the risk in outsourcing, supplier selection is a critical issue for companies. Considerable evidence shows that among the criteria for selecting a supplier, quality is the most critical factor and the process yield index is an efficient tool for assessing the process quality of the supplier. Although the frequentist approach has been adopted to discriminate the degrees of two yield indices to solve the supplier selection problem, unknown parameters must be estimated from samples, which potentially introduce uncertainty into the statistical testing process. Instead of the frequentist inference, this study proposes using the Bayesian inference to derive the posterior distribution of the ratio of two yield indices. Furthermore, a Markov chain Monte Carlo technique is applied to discern the empirical posterior distribution of the ratio with the aim of discriminating the degrees of two yield indices. The simulations show that the proposed method is not only of reasonable empirical size but tests well in terms of power. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-018-3718-4

DOI

http://dx.doi.org/10.1007/s00521-018-3718-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107089888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Department of Statistics and Informatics Science, Providence University, 200, Chung-Chi Road, Salu Dist., 433, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Mou-Yuan", 
        "id": "sg:person.013733347455.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733347455.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Chien-Wei", 
        "id": "sg:person.011226151656.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226151656.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/qre.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006280988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-003-0350-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009028508", 
          "https://doi.org/10.1007/s00190-003-0350-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(98)10183-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014797881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2015.1041572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015349841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/06-ba101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016165148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177013815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021018321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-013-1500-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024758402", 
          "https://doi.org/10.1007/s00521-013-1500-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1946.0056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025034598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(94)00114-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026049368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2016.1198055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026527761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029488311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(91)90033-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031454461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(91)90033-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031454461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2012.718450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033363709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8652-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033373460", 
          "https://doi.org/10.1007/978-1-4419-8652-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8652-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033373460", 
          "https://doi.org/10.1007/978-1-4419-8652-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/16843703.2013.11673312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036219002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041286299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09537289308919445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042294959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12046-015-0353-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043495504", 
          "https://doi.org/10.1007/s12046-015-0353-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0020754042000203876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045279568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-2078-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046033596", 
          "https://doi.org/10.1007/s00521-015-2078-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsp.2015.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046534767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.1599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047508759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.1051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047508832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.1051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047508832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08982119408918738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050446519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2161999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsm.2009.2024851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405415583883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063883255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405415583883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063883255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-493x.1980.tb00023.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086007647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-493x.1990.tb00515.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086007906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-493x.1966.tb00818.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092254530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/16843703.2017.1389145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092262706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13137-017-0101-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095860833", 
          "https://doi.org/10.1007/s13137-017-0101-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.2005.11980333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101085369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1991.11979279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101149686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1991.11979284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101149691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983628"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-18", 
    "datePublishedReg": "2018-09-18", 
    "description": "Due to the risk in outsourcing, supplier selection is a critical issue for companies. Considerable evidence shows that among the criteria for selecting a supplier, quality is the most critical factor and the process yield index is an efficient tool for assessing the process quality of the supplier. Although the frequentist approach has been adopted to discriminate the degrees of two yield indices to solve the supplier selection problem, unknown parameters must be estimated from samples, which potentially introduce uncertainty into the statistical testing process. Instead of the frequentist inference, this study proposes using the Bayesian inference to derive the posterior distribution of the ratio of two yield indices. Furthermore, a Markov chain Monte Carlo technique is applied to discern the empirical posterior distribution of the ratio with the aim of discriminating the degrees of two yield indices. The simulations show that the proposed method is not only of reasonable empirical size but tests well in terms of power.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-018-3718-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Supplier selection based on normal process yield: the Bayesian inference", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d58b0587723b5da4d68b82761a0ed76089ccd65412c168ebef66ad4ecde9e4b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-018-3718-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107089888"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-018-3718-4", 
      "https://app.dimensions.ai/details/publication/pub.1107089888"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000528.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-018-3718-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3718-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3718-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3718-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3718-4'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-018-3718-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N36e3b1558a50416dbbcdc9c0af40a9f3
4 schema:citation sg:pub.10.1007/978-1-4419-8652-8
5 sg:pub.10.1007/s00190-003-0350-5
6 sg:pub.10.1007/s00521-013-1500-1
7 sg:pub.10.1007/s00521-015-2078-6
8 sg:pub.10.1007/s12046-015-0353-y
9 sg:pub.10.1007/s13137-017-0101-z
10 https://doi.org/10.1002/qre.1051
11 https://doi.org/10.1002/qre.1599
12 https://doi.org/10.1002/qre.450
13 https://doi.org/10.1016/0377-2217(91)90033-r
14 https://doi.org/10.1016/0378-3758(94)00114-b
15 https://doi.org/10.1016/j.dsp.2015.04.005
16 https://doi.org/10.1016/j.patcog.2009.03.021
17 https://doi.org/10.1016/s0024-3795(98)10183-0
18 https://doi.org/10.1063/1.1699114
19 https://doi.org/10.1080/0020754042000203876
20 https://doi.org/10.1080/00207543.2012.718450
21 https://doi.org/10.1080/00207543.2015.1041572
22 https://doi.org/10.1080/00207543.2016.1198055
23 https://doi.org/10.1080/00224065.1991.11979279
24 https://doi.org/10.1080/00224065.1991.11979284
25 https://doi.org/10.1080/00224065.2005.11980333
26 https://doi.org/10.1080/08982119408918738
27 https://doi.org/10.1080/09537289308919445
28 https://doi.org/10.1080/16843703.2013.11673312
29 https://doi.org/10.1080/16843703.2017.1389145
30 https://doi.org/10.1093/biomet/57.1.97
31 https://doi.org/10.1098/rspa.1946.0056
32 https://doi.org/10.1109/tnn.2011.2161999
33 https://doi.org/10.1109/tpami.1984.4767596
34 https://doi.org/10.1109/tsm.2009.2024851
35 https://doi.org/10.1111/j.1745-493x.1966.tb00818.x
36 https://doi.org/10.1111/j.1745-493x.1980.tb00023.x
37 https://doi.org/10.1111/j.1745-493x.1990.tb00515.x
38 https://doi.org/10.1177/0954405415583883
39 https://doi.org/10.1214/06-ba101
40 https://doi.org/10.1214/ss/1177011136
41 https://doi.org/10.1214/ss/1177013815
42 https://doi.org/10.2307/2347565
43 https://doi.org/10.2307/2986138
44 schema:datePublished 2018-09-18
45 schema:datePublishedReg 2018-09-18
46 schema:description Due to the risk in outsourcing, supplier selection is a critical issue for companies. Considerable evidence shows that among the criteria for selecting a supplier, quality is the most critical factor and the process yield index is an efficient tool for assessing the process quality of the supplier. Although the frequentist approach has been adopted to discriminate the degrees of two yield indices to solve the supplier selection problem, unknown parameters must be estimated from samples, which potentially introduce uncertainty into the statistical testing process. Instead of the frequentist inference, this study proposes using the Bayesian inference to derive the posterior distribution of the ratio of two yield indices. Furthermore, a Markov chain Monte Carlo technique is applied to discern the empirical posterior distribution of the ratio with the aim of discriminating the degrees of two yield indices. The simulations show that the proposed method is not only of reasonable empirical size but tests well in terms of power.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1104357
51 schema:name Supplier selection based on normal process yield: the Bayesian inference
52 schema:pagination 1-13
53 schema:productId N29de75860f98442c806b9bf53891452c
54 Ncc57fe9c7bdb48b389e69a8b927c8078
55 Ne433852d3fb34da3b665c7142c154948
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107089888
57 https://doi.org/10.1007/s00521-018-3718-4
58 schema:sdDatePublished 2019-04-11T01:10
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Na099cb3125e44b2aa8cc50e6a145f1b1
61 schema:url http://link.springer.com/10.1007%2Fs00521-018-3718-4
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N18eacd8548be4600afa7fe7f16be9839 rdf:first sg:person.011226151656.35
66 rdf:rest rdf:nil
67 N29de75860f98442c806b9bf53891452c schema:name readcube_id
68 schema:value d58b0587723b5da4d68b82761a0ed76089ccd65412c168ebef66ad4ecde9e4b4
69 rdf:type schema:PropertyValue
70 N36e3b1558a50416dbbcdc9c0af40a9f3 rdf:first sg:person.013733347455.99
71 rdf:rest N18eacd8548be4600afa7fe7f16be9839
72 Na099cb3125e44b2aa8cc50e6a145f1b1 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ncc57fe9c7bdb48b389e69a8b927c8078 schema:name doi
75 schema:value 10.1007/s00521-018-3718-4
76 rdf:type schema:PropertyValue
77 Ne433852d3fb34da3b665c7142c154948 schema:name dimensions_id
78 schema:value pub.1107089888
79 rdf:type schema:PropertyValue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
84 schema:name Statistics
85 rdf:type schema:DefinedTerm
86 sg:journal.1104357 schema:issn 0941-0643
87 1433-3058
88 schema:name Neural Computing and Applications
89 rdf:type schema:Periodical
90 sg:person.011226151656.35 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
91 schema:familyName Wu
92 schema:givenName Chien-Wei
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226151656.35
94 rdf:type schema:Person
95 sg:person.013733347455.99 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
96 schema:familyName Liao
97 schema:givenName Mou-Yuan
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733347455.99
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4419-8652-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033373460
101 https://doi.org/10.1007/978-1-4419-8652-8
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00190-003-0350-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009028508
104 https://doi.org/10.1007/s00190-003-0350-5
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00521-013-1500-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024758402
107 https://doi.org/10.1007/s00521-013-1500-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00521-015-2078-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046033596
110 https://doi.org/10.1007/s00521-015-2078-6
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12046-015-0353-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043495504
113 https://doi.org/10.1007/s12046-015-0353-y
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s13137-017-0101-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1095860833
116 https://doi.org/10.1007/s13137-017-0101-z
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/qre.1051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047508832
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/qre.1599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047508759
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/qre.450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006280988
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0377-2217(91)90033-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1031454461
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0378-3758(94)00114-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049368
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.dsp.2015.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046534767
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.patcog.2009.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041286299
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0024-3795(98)10183-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014797881
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/0020754042000203876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045279568
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/00207543.2012.718450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033363709
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/00207543.2015.1041572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015349841
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/00207543.2016.1198055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026527761
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/00224065.1991.11979279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101149686
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/00224065.1991.11979284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101149691
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/00224065.2005.11980333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101085369
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/08982119408918738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446519
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/09537289308919445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042294959
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/16843703.2013.11673312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036219002
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/16843703.2017.1389145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092262706
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1098/rspa.1946.0056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025034598
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tnn.2011.2161999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717925
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tsm.2009.2024851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792059
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/j.1745-493x.1966.tb00818.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092254530
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.1745-493x.1980.tb00023.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1086007647
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/j.1745-493x.1990.tb00515.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1086007906
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1177/0954405415583883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063883255
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1214/06-ba101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016165148
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1214/ss/1177011136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029488311
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1214/ss/1177013815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021018321
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2307/2347565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983349
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2307/2986138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983628
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
187 schema:name Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
190 schema:name Department of Statistics and Informatics Science, Providence University, 200, Chung-Chi Road, Salu Dist., 433, Taichung, Taiwan
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...