Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-20

AUTHORS

Muhammad Usman, Muhammad Hamid, Mohammad Mehdi Rashidi

ABSTRACT

In the current article, we investigated a three-dimensional nanofluid bio-convection model near a stagnation attachment. The set of governing equations, with a set of similarity variables, expressing the conservation of momentum, total mass, microorganisms, thermal energy and nanoparticles are reduced to nonlinear ODEs set. The obtained nonlinear system is tackled via collocation-based Gegenbauer wavelets technique. The purpose of this extension is to reduce the computational work as compared to the traditional Gegenbauer wavelets method. Additionally, the suggested trial solutions must satisfy the boundary conditions. Convergence analysis shows an excellent agreement. The graphical plots for various physical parameters are illustrated. Additionally, the significant physical quantities of viable interests and the impact of different physical parameters on the dissemination of the motile microorganisms are also included in our study. The error and convergence analyses are endorsing that the proposed method is well efficient and could be extended to other nonlinear problems. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-018-3625-8

DOI

http://dx.doi.org/10.1007/s00521-018-3625-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105735198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "School of Mathematical Sciences, Peking University, 100871, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usman", 
        "givenName": "Muhammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "School of Mathematical Sciences, Peking University, 100871, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamid", 
        "givenName": "Muhammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "Mohammad Mehdi", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2010.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000508515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(98)00080-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003159504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010699683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00643-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011767295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10483-016-2046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011932809", 
          "https://doi.org/10.1007/s10483-016-2046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02353703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016601762", 
          "https://doi.org/10.1007/bf02353703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02353703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016601762", 
          "https://doi.org/10.1007/bf02353703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017279983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijengsci.2005.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021267245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023344068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1933(04)00050-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027727258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034344130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00136441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035544530", 
          "https://doi.org/10.1007/bf00136441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00136441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035544530", 
          "https://doi.org/10.1007/bf00136441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036476385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2007.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038069683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1933(03)00196-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039973060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1933(03)00196-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039973060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(64)90143-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041176856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-011-0230-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046046324", 
          "https://doi.org/10.1007/s00162-011-0230-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00162-011-0230-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046046324", 
          "https://doi.org/10.1007/s00162-011-0230-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046546369", 
          "https://doi.org/10.1186/1556-276x-6-100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/s0161171284000648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050036984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.05.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053409735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0169-5983/43/5/055505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059039426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2017.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086356246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092580226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5016946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101060257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793524518500481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101640749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12648-018-1196-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103451802", 
          "https://doi.org/10.1007/s12648-018-1196-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12648-018-1196-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103451802", 
          "https://doi.org/10.1007/s12648-018-1196-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-20", 
    "datePublishedReg": "2018-07-20", 
    "description": "In the current article, we investigated a three-dimensional nanofluid bio-convection model near a stagnation attachment. The set of governing equations, with a set of similarity variables, expressing the conservation of momentum, total mass, microorganisms, thermal energy and nanoparticles are reduced to nonlinear ODEs set. The obtained nonlinear system is tackled via collocation-based Gegenbauer wavelets technique. The purpose of this extension is to reduce the computational work as compared to the traditional Gegenbauer wavelets method. Additionally, the suggested trial solutions must satisfy the boundary conditions. Convergence analysis shows an excellent agreement. The graphical plots for various physical parameters are illustrated. Additionally, the significant physical quantities of viable interests and the impact of different physical parameters on the dissemination of the motile microorganisms are also included in our study. The error and convergence analyses are endorsing that the proposed method is well efficient and could be extended to other nonlinear problems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-018-3625-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "541844678c6282810dfad707d901de33cf32a4e562e4f56da8b0977a5af24943"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-018-3625-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105735198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-018-3625-8", 
      "https://app.dimensions.ai/details/publication/pub.1105735198"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-018-3625-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3625-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3625-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3625-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3625-8'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-018-3625-8 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N831b0b8e00504489ab546ed0afcaa3ae
4 schema:citation sg:pub.10.1007/bf00136441
5 sg:pub.10.1007/bf02353703
6 sg:pub.10.1007/s00162-011-0230-1
7 sg:pub.10.1007/s10483-016-2046-9
8 sg:pub.10.1007/s12648-018-1196-2
9 sg:pub.10.1186/1556-276x-6-100
10 https://doi.org/10.1016/0017-9310(64)90143-7
11 https://doi.org/10.1016/j.aej.2017.03.052
12 https://doi.org/10.1016/j.euromechflu.2010.10.007
13 https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015
14 https://doi.org/10.1016/j.ijengsci.2005.03.002
15 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
16 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.012
17 https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.086
18 https://doi.org/10.1016/j.ijthermalsci.2007.05.001
19 https://doi.org/10.1016/j.jmmm.2015.10.034
20 https://doi.org/10.1016/j.molliq.2016.05.049
21 https://doi.org/10.1016/j.molliq.2017.11.047
22 https://doi.org/10.1016/s0017-9310(98)00080-5
23 https://doi.org/10.1016/s0377-0427(00)00643-9
24 https://doi.org/10.1016/s0735-1933(03)00196-9
25 https://doi.org/10.1016/s0735-1933(04)00050-8
26 https://doi.org/10.1063/1.5016946
27 https://doi.org/10.1088/0169-5983/43/5/055505
28 https://doi.org/10.1115/1.2150834
29 https://doi.org/10.1142/s1793524518500481
30 https://doi.org/10.1155/s0161171284000648
31 schema:datePublished 2018-07-20
32 schema:datePublishedReg 2018-07-20
33 schema:description In the current article, we investigated a three-dimensional nanofluid bio-convection model near a stagnation attachment. The set of governing equations, with a set of similarity variables, expressing the conservation of momentum, total mass, microorganisms, thermal energy and nanoparticles are reduced to nonlinear ODEs set. The obtained nonlinear system is tackled via collocation-based Gegenbauer wavelets technique. The purpose of this extension is to reduce the computational work as compared to the traditional Gegenbauer wavelets method. Additionally, the suggested trial solutions must satisfy the boundary conditions. Convergence analysis shows an excellent agreement. The graphical plots for various physical parameters are illustrated. Additionally, the significant physical quantities of viable interests and the impact of different physical parameters on the dissemination of the motile microorganisms are also included in our study. The error and convergence analyses are endorsing that the proposed method is well efficient and could be extended to other nonlinear problems.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1104357
38 schema:name Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point
39 schema:pagination 1-17
40 schema:productId N899acfad83034676b91f81abce9cab83
41 N9640a4d3c3f74f1a86048a3be5d3d3e1
42 Nfba92938e4434e4389e57ca8bb95bec7
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105735198
44 https://doi.org/10.1007/s00521-018-3625-8
45 schema:sdDatePublished 2019-04-11T09:56
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N6e28152bb1df406f9886036f88e2d0a8
48 schema:url https://link.springer.com/10.1007%2Fs00521-018-3625-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N6e28152bb1df406f9886036f88e2d0a8 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N831b0b8e00504489ab546ed0afcaa3ae rdf:first Nbb3437fe78d34112b33fb7b6c67753b6
55 rdf:rest Nef0d50e78c554f9f84d016be559f4333
56 N899acfad83034676b91f81abce9cab83 schema:name doi
57 schema:value 10.1007/s00521-018-3625-8
58 rdf:type schema:PropertyValue
59 N9640a4d3c3f74f1a86048a3be5d3d3e1 schema:name dimensions_id
60 schema:value pub.1105735198
61 rdf:type schema:PropertyValue
62 Nab9fbb61d94240138585417abdf83bb2 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
63 schema:familyName Hamid
64 schema:givenName Muhammad
65 rdf:type schema:Person
66 Nb26c1a91c0b14584880e3def3803e6c6 rdf:first sg:person.016573246311.03
67 rdf:rest rdf:nil
68 Nbb3437fe78d34112b33fb7b6c67753b6 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
69 schema:familyName Usman
70 schema:givenName Muhammad
71 rdf:type schema:Person
72 Nef0d50e78c554f9f84d016be559f4333 rdf:first Nab9fbb61d94240138585417abdf83bb2
73 rdf:rest Nb26c1a91c0b14584880e3def3803e6c6
74 Nfba92938e4434e4389e57ca8bb95bec7 schema:name readcube_id
75 schema:value 541844678c6282810dfad707d901de33cf32a4e562e4f56da8b0977a5af24943
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
81 schema:name Numerical and Computational Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1104357 schema:issn 0941-0643
84 1433-3058
85 schema:name Neural Computing and Applications
86 rdf:type schema:Periodical
87 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
88 schema:familyName Rashidi
89 schema:givenName Mohammad Mehdi
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
91 rdf:type schema:Person
92 sg:pub.10.1007/bf00136441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035544530
93 https://doi.org/10.1007/bf00136441
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02353703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016601762
96 https://doi.org/10.1007/bf02353703
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00162-011-0230-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046046324
99 https://doi.org/10.1007/s00162-011-0230-1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10483-016-2046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011932809
102 https://doi.org/10.1007/s10483-016-2046-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s12648-018-1196-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103451802
105 https://doi.org/10.1007/s12648-018-1196-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1186/1556-276x-6-100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046546369
108 https://doi.org/10.1186/1556-276x-6-100
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0017-9310(64)90143-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041176856
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.aej.2017.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086356246
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.euromechflu.2010.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000508515
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010699683
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ijengsci.2005.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021267245
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017279983
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023344068
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034344130
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ijthermalsci.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038069683
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jmmm.2015.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036476385
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.molliq.2016.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053409735
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.molliq.2017.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092580226
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0017-9310(98)00080-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003159504
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0377-0427(00)00643-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011767295
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0735-1933(03)00196-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039973060
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0735-1933(04)00050-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027727258
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.5016946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101060257
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/0169-5983/43/5/055505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059039426
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1142/s1793524518500481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101640749
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1155/s0161171284000648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050036984
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
153 schema:name School of Mathematical Sciences, Peking University, 100871, Beijing, People’s Republic of China
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
156 schema:name Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham, UK
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...