AMSOM: artificial metaplasticity in SOM neural networks—application to MIT-BIH arrhythmias database View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-09

AUTHORS

Santiago Torres-Alegre, Juan Fombellida, Juan Antonio Piñuela-Izquierdo, Diego Andina

ABSTRACT

Artificial metaplasticity is the machine learning algorithm inspired in the biological metaplasticity of neural synapses. Metaplasticity stands for plasticity of plasticity, and as long as plasticity is related to memory, metaplasticity is related to learning. Implemented in supervised learning assuming input patterns distribution or a related function, it has proved to be very efficient in performance and in training convergence for multidisciplinary applications. Now, for the first time, this kind of artificial metaplasticity is implemented in an unsupervised neural network, achieving also excellent results that are presented in this paper. To compare results, a modified self-organization map is applied to the classification of MIT-BIH cardiac arrhythmias database. More... »

PAGES

1-8

References to SciGraph publications

  • 1982-07. Analysis of a simple self-organizing process in BIOLOGICAL CYBERNETICS
  • 2007. A Preliminary Neural Model for Movement Direction Recognition Based on Biologically Plausible Plasticity Rules in NATURE INSPIRED PROBLEM-SOLVING METHODS IN KNOWLEDGE ENGINEERING
  • 2015. Artificial Metaplasticity: Application to MIT-BIH Arrhythmias Database in ARTIFICIAL COMPUTATION IN BIOLOGY AND MEDICINE
  • 1982-01. Self-organized formation of topologically correct feature maps in BIOLOGICAL CYBERNETICS
  • 2002-09. Characterisation of electrocardiogram signals based on blind source separation in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2013. Application of Artificial Metaplasticity Neural Networks to Cardiac Arrhythmias Classification in NATURAL AND ARTIFICIAL MODELS IN COMPUTATION AND BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-018-3576-0

    DOI

    http://dx.doi.org/10.1007/s00521-018-3576-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104496085


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.5690.a", 
              "name": [
                "Group for Automation in Signals and Communications, Technical University of Madrid, Madrid, Spain", 
                "ETSIT-Technical University of Madrid, Avd Complutense, 28040, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torres-Alegre", 
            "givenName": "Santiago", 
            "id": "sg:person.013575114033.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013575114033.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.5690.a", 
              "name": [
                "Group for Automation in Signals and Communications, Technical University of Madrid, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fombellida", 
            "givenName": "Juan", 
            "id": "sg:person.016514702633.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514702633.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.119375.8", 
              "name": [
                "Universidad Europea de Madrid, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pi\u00f1uela-Izquierdo", 
            "givenName": "Juan Antonio", 
            "id": "sg:person.011452705633.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452705633.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.5690.a", 
              "name": [
                "Group for Automation in Signals and Communications, Technical University of Madrid, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andina", 
            "givenName": "Diego", 
            "id": "sg:person.015570333447.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570333447.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00337288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009635558", 
              "https://doi.org/10.1007/bf00337288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-73055-2_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016031290", 
              "https://doi.org/10.1007/978-3-540-73055-2_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38637-4_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020652142", 
              "https://doi.org/10.1007/978-3-642-38637-4_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1468-0394.2011.00606.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022805500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026723402", 
              "https://doi.org/10.1007/bf00317973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026723402", 
              "https://doi.org/10.1007/bf00317973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2016.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032615147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033093964", 
              "https://doi.org/10.1007/bf02345455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033093964", 
              "https://doi.org/10.1007/bf02345455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035518662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038069691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2015.12.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039245585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-18914-7_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039952544", 
              "https://doi.org/10.1007/978-3-319-18914-7_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052867467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2012.08.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053688761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.740880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061085384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/51.932724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061185128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.80266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2013.2290800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061529430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2015.2468589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061529973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075184787", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-09", 
        "datePublishedReg": "2018-06-09", 
        "description": "Artificial metaplasticity is the machine learning algorithm inspired in the biological metaplasticity of neural synapses. Metaplasticity stands for plasticity of plasticity, and as long as plasticity is related to memory, metaplasticity is related to learning. Implemented in supervised learning assuming input patterns distribution or a related function, it has proved to be very efficient in performance and in training convergence for multidisciplinary applications. Now, for the first time, this kind of artificial metaplasticity is implemented in an unsupervised neural network, achieving also excellent results that are presented in this paper. To compare results, a modified self-organization map is applied to the classification of MIT-BIH cardiac arrhythmias database.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00521-018-3576-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "type": "Periodical"
          }
        ], 
        "name": "AMSOM: artificial metaplasticity in SOM neural networks\u2014application to MIT-BIH arrhythmias database", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f5fbf1c746576e0e9857772fbb7a0c0b7871a85ae9416625fc83b85f8f29a2fd"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-018-3576-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104496085"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-018-3576-0", 
          "https://app.dimensions.ai/details/publication/pub.1104496085"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54297_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00521-018-3576-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3576-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3576-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3576-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3576-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-018-3576-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N6ad23d625ad54688b4ca6ae9bec1d609
    4 schema:citation sg:pub.10.1007/978-3-319-18914-7_14
    5 sg:pub.10.1007/978-3-540-73055-2_65
    6 sg:pub.10.1007/978-3-642-38637-4_19
    7 sg:pub.10.1007/bf00317973
    8 sg:pub.10.1007/bf00337288
    9 sg:pub.10.1007/bf02345455
    10 https://app.dimensions.ai/details/publication/pub.1075184787
    11 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    12 https://doi.org/10.1016/j.bspc.2016.07.010
    13 https://doi.org/10.1016/j.cmpb.2015.12.024
    14 https://doi.org/10.1016/j.eswa.2007.05.006
    15 https://doi.org/10.1016/j.neucom.2010.07.019
    16 https://doi.org/10.1016/j.neucom.2012.08.042
    17 https://doi.org/10.1109/10.740880
    18 https://doi.org/10.1109/51.932724
    19 https://doi.org/10.1109/72.80266
    20 https://doi.org/10.1109/tbme.2013.2290800
    21 https://doi.org/10.1109/tbme.2015.2468589
    22 https://doi.org/10.1111/j.1468-0394.2011.00606.x
    23 schema:datePublished 2018-06-09
    24 schema:datePublishedReg 2018-06-09
    25 schema:description Artificial metaplasticity is the machine learning algorithm inspired in the biological metaplasticity of neural synapses. Metaplasticity stands for plasticity of plasticity, and as long as plasticity is related to memory, metaplasticity is related to learning. Implemented in supervised learning assuming input patterns distribution or a related function, it has proved to be very efficient in performance and in training convergence for multidisciplinary applications. Now, for the first time, this kind of artificial metaplasticity is implemented in an unsupervised neural network, achieving also excellent results that are presented in this paper. To compare results, a modified self-organization map is applied to the classification of MIT-BIH cardiac arrhythmias database.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf sg:journal.1104357
    30 schema:name AMSOM: artificial metaplasticity in SOM neural networks—application to MIT-BIH arrhythmias database
    31 schema:pagination 1-8
    32 schema:productId N184e0e2e2b9c448a9f06c1c984889a10
    33 N1a0a4dc4c9474778a7fa05c02e23dc77
    34 N2291af1a80f8446186bdb8ee09d650e1
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104496085
    36 https://doi.org/10.1007/s00521-018-3576-0
    37 schema:sdDatePublished 2019-04-11T10:15
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N67454d60745c406f888a65d94e21706e
    40 schema:url https://link.springer.com/10.1007%2Fs00521-018-3576-0
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N184e0e2e2b9c448a9f06c1c984889a10 schema:name readcube_id
    45 schema:value f5fbf1c746576e0e9857772fbb7a0c0b7871a85ae9416625fc83b85f8f29a2fd
    46 rdf:type schema:PropertyValue
    47 N1a0a4dc4c9474778a7fa05c02e23dc77 schema:name dimensions_id
    48 schema:value pub.1104496085
    49 rdf:type schema:PropertyValue
    50 N2291af1a80f8446186bdb8ee09d650e1 schema:name doi
    51 schema:value 10.1007/s00521-018-3576-0
    52 rdf:type schema:PropertyValue
    53 N2735495e3ee747ed8802aa82b7f35444 rdf:first sg:person.015570333447.29
    54 rdf:rest rdf:nil
    55 N2d7ef353e191437b9556d4c6948e79f1 rdf:first sg:person.016514702633.57
    56 rdf:rest Nd9ca60bc173d4522a0082c2a3d6ea437
    57 N67454d60745c406f888a65d94e21706e schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N6ad23d625ad54688b4ca6ae9bec1d609 rdf:first sg:person.013575114033.51
    60 rdf:rest N2d7ef353e191437b9556d4c6948e79f1
    61 Nd9ca60bc173d4522a0082c2a3d6ea437 rdf:first sg:person.011452705633.62
    62 rdf:rest N2735495e3ee747ed8802aa82b7f35444
    63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Information and Computing Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Artificial Intelligence and Image Processing
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1104357 schema:issn 0941-0643
    70 1433-3058
    71 schema:name Neural Computing and Applications
    72 rdf:type schema:Periodical
    73 sg:person.011452705633.62 schema:affiliation https://www.grid.ac/institutes/grid.119375.8
    74 schema:familyName Piñuela-Izquierdo
    75 schema:givenName Juan Antonio
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452705633.62
    77 rdf:type schema:Person
    78 sg:person.013575114033.51 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
    79 schema:familyName Torres-Alegre
    80 schema:givenName Santiago
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013575114033.51
    82 rdf:type schema:Person
    83 sg:person.015570333447.29 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
    84 schema:familyName Andina
    85 schema:givenName Diego
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570333447.29
    87 rdf:type schema:Person
    88 sg:person.016514702633.57 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
    89 schema:familyName Fombellida
    90 schema:givenName Juan
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514702633.57
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-3-319-18914-7_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039952544
    94 https://doi.org/10.1007/978-3-319-18914-7_14
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-540-73055-2_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016031290
    97 https://doi.org/10.1007/978-3-540-73055-2_65
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-642-38637-4_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020652142
    100 https://doi.org/10.1007/978-3-642-38637-4_19
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf00317973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026723402
    103 https://doi.org/10.1007/bf00317973
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf00337288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635558
    106 https://doi.org/10.1007/bf00337288
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf02345455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033093964
    109 https://doi.org/10.1007/bf02345455
    110 rdf:type schema:CreativeWork
    111 https://app.dimensions.ai/details/publication/pub.1075184787 schema:CreativeWork
    112 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.bspc.2016.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032615147
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.cmpb.2015.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039245585
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.eswa.2007.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038069691
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.neucom.2010.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035518662
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.neucom.2012.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053688761
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/10.740880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085384
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/51.932724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061185128
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/72.80266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219289
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/tbme.2013.2290800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529430
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/tbme.2015.2468589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529973
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1111/j.1468-0394.2011.00606.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022805500
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.119375.8 schema:alternateName European University of Madrid
    137 schema:name Universidad Europea de Madrid, Madrid, Spain
    138 rdf:type schema:Organization
    139 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
    140 schema:name ETSIT-Technical University of Madrid, Avd Complutense, 28040, Madrid, Spain
    141 Group for Automation in Signals and Communications, Technical University of Madrid, Madrid, Spain
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...