Predicting hourly ozone concentrations using wavelets and ARIMA models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-19

AUTHORS

Ledys Salazar, Orietta Nicolis, Fabrizio Ruggeri, Jozef Kisel’ák, Milan Stehlík

ABSTRACT

In recent years, air pollution has been a major concern for its implications on human health. Specifically, ozone (O3) pollution is causing common respiratory diseases. In this paper, we illustrate the process of modeling and prediction hourly O3 pollution measurements using wavelet transforms. We split the time series of O3 in daily intervals and estimate scale and wavelet coefficients for each interval by the discrete wavelet transform (DWT) with Haar filter. Subsequently we apply cumulated autoregressive integrated moving average (ARIMA) to estimate the coefficients and forecast their evolution in future intervals. Then the inverse discrete wavelet transform is implemented for the reconstruction of the time series and the forecast in the near future. In order to assess the performance of the proposed methodology, we compare the predictions obtained by the DWT–ARIMA with those obtained by the ARIMA model. Several theoretical results are shown through a simulation study. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-018-3345-0

DOI

http://dx.doi.org/10.1007/s00521-018-3345-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100477043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Valpara\u00edso", 
          "id": "https://www.grid.ac/institutes/grid.412185.b", 
          "name": [
            "Institute of Statistics, University of Valpara\u00edso, Av. Gran Breta\u00f1a, 1111, Valpara\u00edso, Chile"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salazar", 
        "givenName": "Ledys", 
        "id": "sg:person.015645323540.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015645323540.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valpara\u00edso", 
          "id": "https://www.grid.ac/institutes/grid.412185.b", 
          "name": [
            "Institute of Statistics, University of Valpara\u00edso, Av. Gran Breta\u00f1a, 1111, Valpara\u00edso, Chile"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolis", 
        "givenName": "Orietta", 
        "id": "sg:person.013666355451.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355451.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNR IMATI, Via Alfonso Corti, 12, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruggeri", 
        "givenName": "Fabrizio", 
        "id": "sg:person.010530561472.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530561472.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Institute of Mathematics, Faculty of Science, P. J. \u0160af\u00e1rik University in Ko\u0161ice, Ko\u0161ice, Slovakia", 
            "Institute of Applied Statistics and Linz Institute of Technology, Johannes Kepler University Linz, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kisel\u2019\u00e1k", 
        "givenName": "Jozef", 
        "id": "sg:person.011360770064.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360770064.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Institute of Statistics, University of Valpara\u00edso, Av. Gran Breta\u00f1a, 1111, Valpara\u00edso, Chile", 
            "Institute of Applied Statistics and Linz Institute of Technology, Johannes Kepler University Linz, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stehl\u00edk", 
        "givenName": "Milan", 
        "id": "sg:person.013700414760.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700414760.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.amc.2007.09.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011119086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10473289.2004.10470949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013809220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75961-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016023553", 
          "https://doi.org/10.1007/978-0-387-75961-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75961-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016023553", 
          "https://doi.org/10.1007/978-0-387-75961-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b97841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019756846", 
          "https://doi.org/10.1007/b97841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1019756846", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2005.04.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020509352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(99)00069-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2008.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041269456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.08.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045407511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00648-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049148174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2495/sdp-v11-n4-558-565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070860192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/eeeic.2011.5874661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093273348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109092320", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-52452-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109092320", 
          "https://doi.org/10.1007/978-3-319-52452-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-52452-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109092320", 
          "https://doi.org/10.1007/978-3-319-52452-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-19", 
    "datePublishedReg": "2018-01-19", 
    "description": "In recent years, air pollution has been a major concern for its implications on human health. Specifically, ozone (O3) pollution is causing common respiratory diseases. In this paper, we illustrate the process of modeling and prediction hourly O3 pollution measurements using wavelet transforms. We split the time series of O3 in daily intervals and estimate scale and wavelet coefficients for each interval by the discrete wavelet transform (DWT) with Haar filter. Subsequently we apply cumulated autoregressive integrated moving average (ARIMA) to estimate the coefficients and forecast their evolution in future intervals. Then the inverse discrete wavelet transform is implemented for the reconstruction of the time series and the forecast in the near future. In order to assess the performance of the proposed methodology, we compare the predictions obtained by the DWT\u2013ARIMA with those obtained by the ARIMA model. Several theoretical results are shown through a simulation study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-018-3345-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Predicting hourly ozone concentrations using wavelets and ARIMA models", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "092a1ad9f07d47032899277a19a134ea2b41819b6f6c5b6d385e8e3f7e3096eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-018-3345-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100477043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-018-3345-0", 
      "https://app.dimensions.ai/details/publication/pub.1100477043"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00521-018-3345-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3345-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3345-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3345-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-018-3345-0'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      39 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-018-3345-0 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N76d36bfb7f7045148180fd73443f3c8a
4 schema:citation sg:pub.10.1007/978-0-387-75961-6
5 sg:pub.10.1007/978-3-319-52452-8
6 sg:pub.10.1007/b97841
7 https://app.dimensions.ai/details/publication/pub.1019756846
8 https://app.dimensions.ai/details/publication/pub.1109092320
9 https://doi.org/10.1016/j.amc.2007.09.067
10 https://doi.org/10.1016/j.atmosenv.2014.08.060
11 https://doi.org/10.1016/j.chemosphere.2005.04.079
12 https://doi.org/10.1016/j.envsoft.2008.04.004
13 https://doi.org/10.1016/s0377-2217(99)00069-7
14 https://doi.org/10.1016/s0925-2312(01)00648-8
15 https://doi.org/10.1080/10473289.2004.10470949
16 https://doi.org/10.1109/34.192463
17 https://doi.org/10.1109/eeeic.2011.5874661
18 https://doi.org/10.2495/sdp-v11-n4-558-565
19 schema:datePublished 2018-01-19
20 schema:datePublishedReg 2018-01-19
21 schema:description In recent years, air pollution has been a major concern for its implications on human health. Specifically, ozone (O3) pollution is causing common respiratory diseases. In this paper, we illustrate the process of modeling and prediction hourly O3 pollution measurements using wavelet transforms. We split the time series of O3 in daily intervals and estimate scale and wavelet coefficients for each interval by the discrete wavelet transform (DWT) with Haar filter. Subsequently we apply cumulated autoregressive integrated moving average (ARIMA) to estimate the coefficients and forecast their evolution in future intervals. Then the inverse discrete wavelet transform is implemented for the reconstruction of the time series and the forecast in the near future. In order to assess the performance of the proposed methodology, we compare the predictions obtained by the DWT–ARIMA with those obtained by the ARIMA model. Several theoretical results are shown through a simulation study.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf sg:journal.1104357
26 schema:name Predicting hourly ozone concentrations using wavelets and ARIMA models
27 schema:pagination 1-10
28 schema:productId N254e2e25edcc482eacdd4ecc85023a8f
29 N776a1ecccc764c47a0809c3081b31a89
30 Nec21bfafb64b4727ba75b230aeaca217
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100477043
32 https://doi.org/10.1007/s00521-018-3345-0
33 schema:sdDatePublished 2019-04-10T13:32
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N269bc4184f144e099a7c29bfbd863050
36 schema:url http://link.springer.com/10.1007/s00521-018-3345-0
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1203d7ba5b0044afbf6f9df2c32f4612 rdf:first sg:person.011360770064.60
41 rdf:rest N98ad85e1276849a6a65755b047bf84bf
42 N254e2e25edcc482eacdd4ecc85023a8f schema:name dimensions_id
43 schema:value pub.1100477043
44 rdf:type schema:PropertyValue
45 N269bc4184f144e099a7c29bfbd863050 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N451dfbe4463f4e7a9e01678305421530 rdf:first sg:person.013666355451.95
48 rdf:rest N823b1ae752384668ba78cac10b1a724d
49 N5e3364026ab943f0966ac60854839606 schema:name CNR IMATI, Via Alfonso Corti, 12, 20133, Milano, Italy
50 rdf:type schema:Organization
51 N76d36bfb7f7045148180fd73443f3c8a rdf:first sg:person.015645323540.51
52 rdf:rest N451dfbe4463f4e7a9e01678305421530
53 N776a1ecccc764c47a0809c3081b31a89 schema:name doi
54 schema:value 10.1007/s00521-018-3345-0
55 rdf:type schema:PropertyValue
56 N823b1ae752384668ba78cac10b1a724d rdf:first sg:person.010530561472.25
57 rdf:rest N1203d7ba5b0044afbf6f9df2c32f4612
58 N98ad85e1276849a6a65755b047bf84bf rdf:first sg:person.013700414760.12
59 rdf:rest rdf:nil
60 Nec21bfafb64b4727ba75b230aeaca217 schema:name readcube_id
61 schema:value 092a1ad9f07d47032899277a19a134ea2b41819b6f6c5b6d385e8e3f7e3096eb
62 rdf:type schema:PropertyValue
63 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
64 schema:name Medical and Health Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
67 schema:name Public Health and Health Services
68 rdf:type schema:DefinedTerm
69 sg:journal.1104357 schema:issn 0941-0643
70 1433-3058
71 schema:name Neural Computing and Applications
72 rdf:type schema:Periodical
73 sg:person.010530561472.25 schema:affiliation N5e3364026ab943f0966ac60854839606
74 schema:familyName Ruggeri
75 schema:givenName Fabrizio
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530561472.25
77 rdf:type schema:Person
78 sg:person.011360770064.60 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
79 schema:familyName Kisel’ák
80 schema:givenName Jozef
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360770064.60
82 rdf:type schema:Person
83 sg:person.013666355451.95 schema:affiliation https://www.grid.ac/institutes/grid.412185.b
84 schema:familyName Nicolis
85 schema:givenName Orietta
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666355451.95
87 rdf:type schema:Person
88 sg:person.013700414760.12 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
89 schema:familyName Stehlík
90 schema:givenName Milan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700414760.12
92 rdf:type schema:Person
93 sg:person.015645323540.51 schema:affiliation https://www.grid.ac/institutes/grid.412185.b
94 schema:familyName Salazar
95 schema:givenName Ledys
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015645323540.51
97 rdf:type schema:Person
98 sg:pub.10.1007/978-0-387-75961-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016023553
99 https://doi.org/10.1007/978-0-387-75961-6
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-319-52452-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109092320
102 https://doi.org/10.1007/978-3-319-52452-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/b97841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019756846
105 https://doi.org/10.1007/b97841
106 rdf:type schema:CreativeWork
107 https://app.dimensions.ai/details/publication/pub.1019756846 schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1109092320 schema:CreativeWork
109 https://doi.org/10.1016/j.amc.2007.09.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011119086
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.atmosenv.2014.08.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045407511
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.chemosphere.2005.04.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020509352
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.envsoft.2008.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041269456
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0377-2217(99)00069-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605423
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0925-2312(01)00648-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049148174
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/10473289.2004.10470949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013809220
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/34.192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155760
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/eeeic.2011.5874661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093273348
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2495/sdp-v11-n4-558-565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070860192
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.412185.b schema:alternateName University of Valparaíso
130 schema:name Institute of Statistics, University of Valparaíso, Av. Gran Bretaña, 1111, Valparaíso, Chile
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
133 schema:name Institute of Applied Statistics and Linz Institute of Technology, Johannes Kepler University Linz, Linz, Austria
134 Institute of Mathematics, Faculty of Science, P. J. Šafárik University in Košice, Košice, Slovakia
135 Institute of Statistics, University of Valparaíso, Av. Gran Bretaña, 1111, Valparaíso, Chile
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...