A hybrid computational approach for Jeffery–Hamel flow in non-parallel walls View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-30

AUTHORS

Jagdev Singh, M. M. Rashidi, Sushila, Devendra Kumar

ABSTRACT

The key goal of this article is to present an efficient hybrid computational technique, namely homotopy analysis transform method (HATM), to investigate Jeffery–Hamel flow. The HATM is an innovative and efficient amalgamation of homotopy analysis technique, standard Laplace transform scheme and homotopy polynomials. The effect of Reynolds number on velocity profile is studied graphically. The obtained results are compared with existing results and it is noticed that the outcomes are in an excellent agreement. The outcomes of the suggested method reveal that the technique is easy to handle and computationally very fantastic. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-017-3198-y

DOI

http://dx.doi.org/10.1007/s00521-017-3198-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091396349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "JECRC University", 
          "id": "https://www.grid.ac/institutes/grid.449403.e", 
          "name": [
            "Department of Mathematics, JECRC University, 303905, Jaipur, Rajasthan, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Jagdev", 
        "id": "sg:person.014641371023.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641371023.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Department of Civil Engineering, University of Birmingham, Edgbaston, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "M. M.", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Vivekananda Global University, 303012, Jaipur, Rajasthan, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sushila", 
        "id": "sg:person.012303450360.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303450360.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JECRC University", 
          "id": "https://www.grid.ac/institutes/grid.449403.e", 
          "name": [
            "Department of Mathematics, JECRC University, 303905, Jaipur, Rajasthan, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Devendra", 
        "id": "sg:person.011746407213.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011746407213.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5897/jcems2013.0153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000343174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asej.2014.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001136754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2009.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003870770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1940.0068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005799291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.10.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006883384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaubas.2013.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008894031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/nleng-2015-0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011333361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2013.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012027488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013229490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-0855-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383781", 
          "https://doi.org/10.1007/s00521-012-0855-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/hff-08-2011-0158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014754923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.07.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016557358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020797735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.07.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022884534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023428490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2014.06.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024058159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2014.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024245278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024680147", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2008.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025079102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2016.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025181079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asej.2015.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028409075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/780415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028934293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/239454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029631963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029867428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2006.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035085058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2014.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035884034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1962.0087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039588926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.3136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040713593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043474999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0096-3003(02)00790-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043614521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0096-3003(02)00790-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043614521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2011.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044019552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00986445.2011.586756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048918733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(99)00018-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050441502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asej.2014.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112094001266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053980550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5899/2015/cna-00220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073490136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083695193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-2909-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083877686", 
          "https://doi.org/10.1007/s00521-017-2909-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bpasts-2017-0019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085090297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-2997-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085208113", 
          "https://doi.org/10.1007/s00521-017-2997-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3037-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085603335", 
          "https://doi.org/10.1007/s00521-017-3037-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3037-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085603335", 
          "https://doi.org/10.1007/s00521-017-3037-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109711103", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85829-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711103", 
          "https://doi.org/10.1007/978-3-642-85829-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85829-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711103", 
          "https://doi.org/10.1007/978-3-642-85829-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-30", 
    "datePublishedReg": "2017-08-30", 
    "description": "The key goal of this article is to present an efficient hybrid computational technique, namely homotopy analysis transform method (HATM), to investigate Jeffery\u2013Hamel flow. The HATM is an innovative and efficient amalgamation of homotopy analysis technique, standard Laplace transform scheme and homotopy polynomials. The effect of Reynolds number on velocity profile is studied graphically. The obtained results are compared with existing results and it is noticed that the outcomes are in an excellent agreement. The outcomes of the suggested method reveal that the technique is easy to handle and computationally very fantastic.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-017-3198-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "A hybrid computational approach for Jeffery\u2013Hamel flow in non-parallel walls", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "378a4cb221feeb60994f1f78a3ee20927daff0931e7f317d0dc34183691d3367"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-017-3198-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091396349"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-017-3198-y", 
      "https://app.dimensions.ai/details/publication/pub.1091396349"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00521-017-3198-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3198-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3198-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3198-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3198-y'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      67 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-017-3198-y schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N8bf928beef884acba60a47d958416654
4 schema:citation sg:pub.10.1007/978-3-642-85829-1
5 sg:pub.10.1007/s00521-012-0855-z
6 sg:pub.10.1007/s00521-017-2909-8
7 sg:pub.10.1007/s00521-017-2997-5
8 sg:pub.10.1007/s00521-017-3037-1
9 https://app.dimensions.ai/details/publication/pub.1024680147
10 https://app.dimensions.ai/details/publication/pub.1109711103
11 https://doi.org/10.1002/mma.3136
12 https://doi.org/10.1016/j.aej.2014.02.001
13 https://doi.org/10.1016/j.aej.2016.03.028
14 https://doi.org/10.1016/j.amc.2006.02.018
15 https://doi.org/10.1016/j.asej.2014.02.007
16 https://doi.org/10.1016/j.asej.2014.10.015
17 https://doi.org/10.1016/j.asej.2015.08.012
18 https://doi.org/10.1016/j.cnsns.2009.12.023
19 https://doi.org/10.1016/j.compbiomed.2013.05.019
20 https://doi.org/10.1016/j.cpc.2014.03.025
21 https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.005
22 https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.107
23 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.096
24 https://doi.org/10.1016/j.ijthermalsci.2014.08.009
25 https://doi.org/10.1016/j.jaubas.2013.10.001
26 https://doi.org/10.1016/j.jmmm.2015.07.027
27 https://doi.org/10.1016/j.jmmm.2015.07.091
28 https://doi.org/10.1016/j.jmmm.2015.08.011
29 https://doi.org/10.1016/j.jmmm.2015.10.102
30 https://doi.org/10.1016/j.mcm.2011.09.038
31 https://doi.org/10.1016/j.molliq.2014.06.037
32 https://doi.org/10.1016/j.physleta.2008.02.006
33 https://doi.org/10.1016/j.powtec.2014.07.028
34 https://doi.org/10.1016/s0045-7825(99)00018-3
35 https://doi.org/10.1016/s0096-3003(02)00790-7
36 https://doi.org/10.1017/s0022112094001266
37 https://doi.org/10.1080/00986445.2011.586756
38 https://doi.org/10.1098/rspa.1940.0068
39 https://doi.org/10.1098/rspa.1962.0087
40 https://doi.org/10.1108/hff-08-2011-0158
41 https://doi.org/10.1155/2012/780415
42 https://doi.org/10.1155/2013/239454
43 https://doi.org/10.1515/bpasts-2017-0019
44 https://doi.org/10.1515/nleng-2015-0012
45 https://doi.org/10.5897/jcems2013.0153
46 https://doi.org/10.5899/2015/cna-00220
47 schema:datePublished 2017-08-30
48 schema:datePublishedReg 2017-08-30
49 schema:description The key goal of this article is to present an efficient hybrid computational technique, namely homotopy analysis transform method (HATM), to investigate Jeffery–Hamel flow. The HATM is an innovative and efficient amalgamation of homotopy analysis technique, standard Laplace transform scheme and homotopy polynomials. The effect of Reynolds number on velocity profile is studied graphically. The obtained results are compared with existing results and it is noticed that the outcomes are in an excellent agreement. The outcomes of the suggested method reveal that the technique is easy to handle and computationally very fantastic.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf sg:journal.1104357
54 schema:name A hybrid computational approach for Jeffery–Hamel flow in non-parallel walls
55 schema:pagination 1-7
56 schema:productId N3fd2904ac15c41ec89ba0ada64120104
57 N4c86536c4a654cbeae553f7286c2b68e
58 Nb9597e3dd2334fa291917c1c11b3850e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091396349
60 https://doi.org/10.1007/s00521-017-3198-y
61 schema:sdDatePublished 2019-04-10T18:32
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nad07d3ccbb624e648bed9b6a66d2ace3
64 schema:url http://link.springer.com/10.1007/s00521-017-3198-y
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N3fd2904ac15c41ec89ba0ada64120104 schema:name readcube_id
69 schema:value 378a4cb221feeb60994f1f78a3ee20927daff0931e7f317d0dc34183691d3367
70 rdf:type schema:PropertyValue
71 N43b164081abe4cea810222dbbe1d99da schema:name Department of Physics, Vivekananda Global University, 303012, Jaipur, Rajasthan, India
72 rdf:type schema:Organization
73 N4c86536c4a654cbeae553f7286c2b68e schema:name dimensions_id
74 schema:value pub.1091396349
75 rdf:type schema:PropertyValue
76 N8bf928beef884acba60a47d958416654 rdf:first sg:person.014641371023.49
77 rdf:rest N91decadf4ab14e93a758184140ade27e
78 N91decadf4ab14e93a758184140ade27e rdf:first sg:person.016573246311.03
79 rdf:rest Nf6e6657aad504989a34aaeb59699ed05
80 Nad07d3ccbb624e648bed9b6a66d2ace3 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nb9597e3dd2334fa291917c1c11b3850e schema:name doi
83 schema:value 10.1007/s00521-017-3198-y
84 rdf:type schema:PropertyValue
85 Nf6e6657aad504989a34aaeb59699ed05 rdf:first sg:person.012303450360.63
86 rdf:rest Nf8b65c237a1445ba82d766325d5b61d3
87 Nf8b65c237a1445ba82d766325d5b61d3 rdf:first sg:person.011746407213.11
88 rdf:rest rdf:nil
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Clinical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1104357 schema:issn 0941-0643
96 1433-3058
97 schema:name Neural Computing and Applications
98 rdf:type schema:Periodical
99 sg:person.011746407213.11 schema:affiliation https://www.grid.ac/institutes/grid.449403.e
100 schema:familyName Kumar
101 schema:givenName Devendra
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011746407213.11
103 rdf:type schema:Person
104 sg:person.012303450360.63 schema:affiliation N43b164081abe4cea810222dbbe1d99da
105 schema:familyName Sushila
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303450360.63
107 rdf:type schema:Person
108 sg:person.014641371023.49 schema:affiliation https://www.grid.ac/institutes/grid.449403.e
109 schema:familyName Singh
110 schema:givenName Jagdev
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641371023.49
112 rdf:type schema:Person
113 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
114 schema:familyName Rashidi
115 schema:givenName M. M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
117 rdf:type schema:Person
118 sg:pub.10.1007/978-3-642-85829-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711103
119 https://doi.org/10.1007/978-3-642-85829-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00521-012-0855-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014383781
122 https://doi.org/10.1007/s00521-012-0855-z
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00521-017-2909-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083877686
125 https://doi.org/10.1007/s00521-017-2909-8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00521-017-2997-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085208113
128 https://doi.org/10.1007/s00521-017-2997-5
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00521-017-3037-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085603335
131 https://doi.org/10.1007/s00521-017-3037-1
132 rdf:type schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1024680147 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1109711103 schema:CreativeWork
135 https://doi.org/10.1002/mma.3136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040713593
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.aej.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023428490
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.aej.2016.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025181079
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.amc.2006.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035085058
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.asej.2014.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052920759
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.asej.2014.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001136754
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.asej.2015.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028409075
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.cnsns.2009.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003870770
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.compbiomed.2013.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012027488
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.cpc.2014.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035884034
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013229490
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043474999
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083695193
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijthermalsci.2014.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024245278
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jaubas.2013.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008894031
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jmmm.2015.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020797735
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jmmm.2015.07.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022884534
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jmmm.2015.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867428
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jmmm.2015.10.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006883384
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.mcm.2011.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044019552
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.molliq.2014.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024058159
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.physleta.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025079102
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.powtec.2014.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016557358
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0045-7825(99)00018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050441502
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0096-3003(02)00790-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043614521
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1017/s0022112094001266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053980550
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/00986445.2011.586756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048918733
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1098/rspa.1940.0068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005799291
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1098/rspa.1962.0087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039588926
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1108/hff-08-2011-0158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014754923
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1155/2012/780415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028934293
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1155/2013/239454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029631963
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1515/bpasts-2017-0019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085090297
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1515/nleng-2015-0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011333361
202 rdf:type schema:CreativeWork
203 https://doi.org/10.5897/jcems2013.0153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000343174
204 rdf:type schema:CreativeWork
205 https://doi.org/10.5899/2015/cna-00220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073490136
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.449403.e schema:alternateName JECRC University
208 schema:name Department of Mathematics, JECRC University, 303905, Jaipur, Rajasthan, India
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
211 schema:name Department of Civil Engineering, University of Birmingham, Edgbaston, Birmingham, UK
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...