Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-21

AUTHORS

Biao Yin, Mahjoub Dridi, Abdellah El Moudni

ABSTRACT

This paper presents a new method to solve the scheduling problem of adaptive traffic signal control at intersection. The method involves recursive least-squares temporal difference (RLS-TD(λ)) learning that is integrated into approximate dynamic programming. The learning mechanism of RLS-TD(λ) is to make an adaptation of linear function approximation by updating its parameters based on environmental feedback. This study investigates the method implementation after modeling a traffic dynamic system at intersection in discrete time. In the model, different traffic control schemes regarding signal phase sequence are considered, especially the defined adaptive phase sequence (APS). By simulating traffic scenarios, RLS-TD(λ) is superior to TD(λ) for updating functional parameters in the approximation, and APS outperforms other conventional control schemes on reducing traffic delay. By comparing with other traffic signal control algorithms, the proposed algorithm yields satisfying results in terms of traffic delay and computation time. More... »

PAGES

1-16

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-017-3066-9

DOI

http://dx.doi.org/10.1007/s00521-017-3066-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086100229


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French Institute of Science and Technology for Transport, Spatial Planning, Development and Networks", 
          "id": "https://www.grid.ac/institutes/grid.249503.9", 
          "name": [
            "LVMT-City Mobility Transport Laboratory, \u00c9cole des Ponts ParisTech, IFSTTAR, UPEM, 77455, Champs-sur-Marne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Biao", 
        "id": "sg:person.07640010555.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640010555.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology of Belfort-Montb\u00e9liard", 
          "id": "https://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "NIT-O2S, Universit\u00e9 de technologie de Belfort-Montb\u00e9liard, 90000, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dridi", 
        "givenName": "Mahjoub", 
        "id": "sg:person.07470326371.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470326371.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology of Belfort-Montb\u00e9liard", 
          "id": "https://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "NIT-O2S, Universit\u00e9 de technologie de Belfort-Montb\u00e9liard, 90000, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moudni", 
        "givenName": "Abdellah El", 
        "id": "sg:person.07647026573.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647026573.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10458-008-9062-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000132086", 
          "https://doi.org/10.1007/s10458-008-9062-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10458-008-9062-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000132086", 
          "https://doi.org/10.1007/s10458-008-9062-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005288612", 
          "https://doi.org/10.1007/bf00114723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005288612", 
          "https://doi.org/10.1007/bf00114723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-029365-3.50048-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008490119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2006.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008617031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-090x(00)00047-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013054318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017633063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arcontrol.2012.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020093189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2011.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020840984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2012.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027005035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s026996480800034x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027719959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15472451003719764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028621494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017936530646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028937715", 
          "https://doi.org/10.1023/a:1017936530646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15472450.2013.810991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032976725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041104486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822805", 
          "https://doi.org/10.1007/bf01211647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822805", 
          "https://doi.org/10.1007/bf01211647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2014.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042928174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15472450500183649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045164877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017928328829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050634079", 
          "https://doi.org/10.1023/a:1017928328829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051801549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2009.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051867561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-its.2009.0070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056829660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-its.2009.0070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056829660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-its.2014.0156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056829963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-947x(2003)129:3(278)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057603761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.580874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061245225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jas.2016.7508798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061276512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mci.2009.932261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061392358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2005.853713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2006.874716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2010.2091408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2013.2255286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2013.2283034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2007.913919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1811-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071040293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1811-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071040293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1811-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071040293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2008.4732718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094924954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2001.948655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094980239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetecs.2009.5073497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095434339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmla.2012.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095496152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmla.2012.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095496152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470182963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470182963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579549"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-21", 
    "datePublishedReg": "2017-06-21", 
    "description": "This paper presents a new method to solve the scheduling problem of adaptive traffic signal control at intersection. The method involves recursive least-squares temporal difference (RLS-TD(\u03bb)) learning that is integrated into approximate dynamic programming. The learning mechanism of RLS-TD(\u03bb) is to make an adaptation of linear function approximation by updating its parameters based on environmental feedback. This study investigates the method implementation after modeling a traffic dynamic system at intersection in discrete time. In the model, different traffic control schemes regarding signal phase sequence are considered, especially the defined adaptive phase sequence (APS). By simulating traffic scenarios, RLS-TD(\u03bb) is superior to TD(\u03bb) for updating functional parameters in the approximation, and APS outperforms other conventional control schemes on reducing traffic delay. By comparing with other traffic signal control algorithms, the proposed algorithm yields satisfying results in terms of traffic delay and computation time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-017-3066-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "S2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-017-3066-9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c0aa604811ac0c47c80e93fb6c90f2cbf1ec27186ffc018a6a8b29176db4172"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086100229"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-017-3066-9", 
      "https://app.dimensions.ai/details/publication/pub.1086100229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56155_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-017-3066-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3066-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3066-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3066-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3066-9'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      65 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-017-3066-9 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N63f93480441a43aaa20414f37e286d66
4 schema:citation sg:pub.10.1007/bf00114723
5 sg:pub.10.1007/bf01211647
6 sg:pub.10.1007/s10458-008-9062-9
7 sg:pub.10.1023/a:1017928328829
8 sg:pub.10.1023/a:1017936530646
9 https://doi.org/10.1002/9780470182963
10 https://doi.org/10.1016/b978-0-08-029365-3.50048-1
11 https://doi.org/10.1016/j.arcontrol.2012.03.004
12 https://doi.org/10.1016/j.engappai.2011.04.011
13 https://doi.org/10.1016/j.engappai.2012.02.013
14 https://doi.org/10.1016/j.engappai.2014.01.007
15 https://doi.org/10.1016/j.eswa.2014.09.003
16 https://doi.org/10.1016/j.ins.2013.08.037
17 https://doi.org/10.1016/j.neucom.2012.09.034
18 https://doi.org/10.1016/j.trc.2006.08.002
19 https://doi.org/10.1016/j.trc.2009.04.005
20 https://doi.org/10.1016/s0968-090x(00)00047-4
21 https://doi.org/10.1017/s026996480800034x
22 https://doi.org/10.1049/iet-its.2009.0070
23 https://doi.org/10.1049/iet-its.2014.0156
24 https://doi.org/10.1061/(asce)0733-947x(2003)129:3(278)
25 https://doi.org/10.1080/15472450.2013.810991
26 https://doi.org/10.1080/15472450500183649
27 https://doi.org/10.1080/15472451003719764
28 https://doi.org/10.1109/9.580874
29 https://doi.org/10.1109/icmla.2012.108
30 https://doi.org/10.1109/itsc.2001.948655
31 https://doi.org/10.1109/itsc.2008.4732718
32 https://doi.org/10.1109/jas.2016.7508798
33 https://doi.org/10.1109/mci.2009.932261
34 https://doi.org/10.1109/tits.2005.853713
35 https://doi.org/10.1109/tits.2006.874716
36 https://doi.org/10.1109/tits.2010.2091408
37 https://doi.org/10.1109/tits.2013.2255286
38 https://doi.org/10.1109/tits.2013.2283034
39 https://doi.org/10.1109/tsmcc.2007.913919
40 https://doi.org/10.1109/vetecs.2009.5073497
41 https://doi.org/10.1613/jair.946
42 https://doi.org/10.3141/1811-14
43 schema:datePublished 2017-06-21
44 schema:datePublishedReg 2017-06-21
45 schema:description This paper presents a new method to solve the scheduling problem of adaptive traffic signal control at intersection. The method involves recursive least-squares temporal difference (RLS-TD(λ)) learning that is integrated into approximate dynamic programming. The learning mechanism of RLS-TD(λ) is to make an adaptation of linear function approximation by updating its parameters based on environmental feedback. This study investigates the method implementation after modeling a traffic dynamic system at intersection in discrete time. In the model, different traffic control schemes regarding signal phase sequence are considered, especially the defined adaptive phase sequence (APS). By simulating traffic scenarios, RLS-TD(λ) is superior to TD(λ) for updating functional parameters in the approximation, and APS outperforms other conventional control schemes on reducing traffic delay. By comparing with other traffic signal control algorithms, the proposed algorithm yields satisfying results in terms of traffic delay and computation time.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N7c7892c4e152439fa94a231f449fc84f
50 N9accc858c8284f0ea67109b6d632ca07
51 sg:journal.1104357
52 schema:name Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection
53 schema:pagination 1-16
54 schema:productId N0aa574df586145cf8f5d90765a3b6718
55 N657f55a765d040bbacedcc1678687c08
56 N889dc14257dd44449b3df7d300aede03
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086100229
58 https://doi.org/10.1007/s00521-017-3066-9
59 schema:sdDatePublished 2019-04-15T09:09
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N5afb4c2766af4431a48c067da866f028
62 schema:url https://link.springer.com/10.1007%2Fs00521-017-3066-9
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0aa574df586145cf8f5d90765a3b6718 schema:name doi
67 schema:value 10.1007/s00521-017-3066-9
68 rdf:type schema:PropertyValue
69 N5afb4c2766af4431a48c067da866f028 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N63f93480441a43aaa20414f37e286d66 rdf:first sg:person.07640010555.73
72 rdf:rest N890c9f76551d45c7ac52326b343c3bd8
73 N657f55a765d040bbacedcc1678687c08 schema:name readcube_id
74 schema:value 3c0aa604811ac0c47c80e93fb6c90f2cbf1ec27186ffc018a6a8b29176db4172
75 rdf:type schema:PropertyValue
76 N7c7892c4e152439fa94a231f449fc84f schema:issueNumber S2
77 rdf:type schema:PublicationIssue
78 N7e8d1bca25c346dbbbadef4120a5d8d0 rdf:first sg:person.07647026573.40
79 rdf:rest rdf:nil
80 N889dc14257dd44449b3df7d300aede03 schema:name dimensions_id
81 schema:value pub.1086100229
82 rdf:type schema:PropertyValue
83 N890c9f76551d45c7ac52326b343c3bd8 rdf:first sg:person.07470326371.59
84 rdf:rest N7e8d1bca25c346dbbbadef4120a5d8d0
85 N9accc858c8284f0ea67109b6d632ca07 schema:volumeNumber 31
86 rdf:type schema:PublicationVolume
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
91 schema:name Applied Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1104357 schema:issn 0941-0643
94 1433-3058
95 schema:name Neural Computing and Applications
96 rdf:type schema:Periodical
97 sg:person.07470326371.59 schema:affiliation https://www.grid.ac/institutes/grid.23082.3b
98 schema:familyName Dridi
99 schema:givenName Mahjoub
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470326371.59
101 rdf:type schema:Person
102 sg:person.07640010555.73 schema:affiliation https://www.grid.ac/institutes/grid.249503.9
103 schema:familyName Yin
104 schema:givenName Biao
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640010555.73
106 rdf:type schema:Person
107 sg:person.07647026573.40 schema:affiliation https://www.grid.ac/institutes/grid.23082.3b
108 schema:familyName Moudni
109 schema:givenName Abdellah El
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647026573.40
111 rdf:type schema:Person
112 sg:pub.10.1007/bf00114723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005288612
113 https://doi.org/10.1007/bf00114723
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01211647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041822805
116 https://doi.org/10.1007/bf01211647
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10458-008-9062-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000132086
119 https://doi.org/10.1007/s10458-008-9062-9
120 rdf:type schema:CreativeWork
121 sg:pub.10.1023/a:1017928328829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050634079
122 https://doi.org/10.1023/a:1017928328829
123 rdf:type schema:CreativeWork
124 sg:pub.10.1023/a:1017936530646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028937715
125 https://doi.org/10.1023/a:1017936530646
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/9780470182963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661432
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/b978-0-08-029365-3.50048-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008490119
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.arcontrol.2012.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020093189
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.engappai.2011.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020840984
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.engappai.2012.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027005035
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.engappai.2014.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042928174
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.eswa.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041104486
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ins.2013.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051801549
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.neucom.2012.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017633063
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.trc.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008617031
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.trc.2009.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051867561
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0968-090x(00)00047-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013054318
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/s026996480800034x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027719959
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1049/iet-its.2009.0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056829660
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1049/iet-its.2014.0156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056829963
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1061/(asce)0733-947x(2003)129:3(278) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057603761
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/15472450.2013.810991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032976725
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/15472450500183649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045164877
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/15472451003719764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028621494
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/9.580874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245225
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/icmla.2012.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095496152
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/itsc.2001.948655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094980239
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/itsc.2008.4732718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094924954
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/jas.2016.7508798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276512
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/mci.2009.932261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392358
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tits.2005.853713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657369
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tits.2006.874716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657397
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tits.2010.2091408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657735
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tits.2013.2255286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658126
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tits.2013.2283034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658242
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tsmcc.2007.913919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798064
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/vetecs.2009.5073497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095434339
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1613/jair.946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579549
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3141/1811-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071040293
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.23082.3b schema:alternateName University of Technology of Belfort-Montbéliard
196 schema:name NIT-O2S, Université de technologie de Belfort-Montbéliard, 90000, Belfort, France
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.249503.9 schema:alternateName French Institute of Science and Technology for Transport, Spatial Planning, Development and Networks
199 schema:name LVMT-City Mobility Transport Laboratory, École des Ponts ParisTech, IFSTTAR, UPEM, 77455, Champs-sur-Marne, France
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...