Ontology type: schema:ScholarlyArticle
2017-06-19
AUTHORSNizar Faisal Alkayem, Biswajit Parida, Sukhomay Pal
ABSTRACTIn welding processes, the selection of optimal process parameter settings is very important to achieve best weld qualities. In this work, neuro-multi-objective evolutionary algorithms (EAs) are proposed to optimize the process parameters in friction stir welding process. Artificial neural network (ANN) models are developed for the simulation of the correlation between process parameters and mechanical properties of the weld using back-propagation algorithm. The weld qualities of the weld joint, such as ultimate tensile strength, yield stress, elongation, bending angle and hardness of the nugget zone, are considered. In order to optimize those quality characteristics, two multi-objective EAs that are non-dominated sorting genetic algorithm II and differential evolution for multi-objective are coupled with the developed ANN models. In the end, multi-criteria decision-making method which is technique for order preference by similarity to the ideal solution is applied on the Pareto front to extract the best solutions. Comparisons are conducted between results obtained from the proposed techniques, and confirmation experiments are performed to verify the simulated results. More... »
PAGES947-956
http://scigraph.springernature.com/pub.10.1007/s00521-017-3059-8
DOIhttp://dx.doi.org/10.1007/s00521-017-3059-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1086100422
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Engineering Mechanics, Hohai University, 210098, Nanjing, Jiangsu, China",
"id": "http://www.grid.ac/institutes/grid.257065.3",
"name": [
"Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India",
"Department of Engineering Mechanics, Hohai University, 210098, Nanjing, Jiangsu, China"
],
"type": "Organization"
},
"familyName": "Alkayem",
"givenName": "Nizar Faisal",
"id": "sg:person.011552232313.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011552232313.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India",
"id": "http://www.grid.ac/institutes/grid.417972.e",
"name": [
"Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India"
],
"type": "Organization"
},
"familyName": "Parida",
"givenName": "Biswajit",
"id": "sg:person.013145173313.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013145173313.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India",
"id": "http://www.grid.ac/institutes/grid.417972.e",
"name": [
"Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India"
],
"type": "Organization"
},
"familyName": "Pal",
"givenName": "Sukhomay",
"id": "sg:person.07537710321.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537710321.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00170-012-3972-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042499688",
"https://doi.org/10.1007/s00170-012-3972-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-31880-4_36",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022038375",
"https://doi.org/10.1007/978-3-540-31880-4_36"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-48318-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049999080",
"https://doi.org/10.1007/978-3-642-48318-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12541-014-0600-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049406569",
"https://doi.org/10.1007/s12541-014-0600-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00500-016-2251-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052599789",
"https://doi.org/10.1007/s00500-016-2251-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00170-012-4154-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028633073",
"https://doi.org/10.1007/s00170-012-4154-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-06-19",
"datePublishedReg": "2017-06-19",
"description": "In welding processes, the selection of optimal process parameter settings is very important to achieve best weld qualities. In this work, neuro-multi-objective evolutionary algorithms (EAs) are proposed to optimize the process parameters in friction stir welding process. Artificial neural network (ANN) models are developed for the simulation of the correlation between process parameters and mechanical properties of the weld using back-propagation algorithm. The weld qualities of the weld joint, such as ultimate tensile strength, yield stress, elongation, bending angle and hardness of the nugget zone, are considered. In order to optimize those quality characteristics, two multi-objective EAs that are non-dominated sorting genetic algorithm II and differential evolution for multi-objective are coupled with the developed ANN models. In the end, multi-criteria decision-making method which is technique for order preference by similarity to the ideal solution is applied on the Pareto front to extract the best solutions. Comparisons are conducted between results obtained from the proposed techniques, and confirmation experiments are performed to verify the simulated results.",
"genre": "article",
"id": "sg:pub.10.1007/s00521-017-3059-8",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1104357",
"issn": [
"0941-0643",
"1433-3058"
],
"name": "Neural Computing and Applications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "Suppl 2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "31"
}
],
"keywords": [
"evolutionary algorithm",
"multi-objective evolutionary algorithm",
"artificial neural network model",
"neural network model",
"back-propagation algorithm",
"genetic algorithm II",
"network model",
"ANN model",
"decision-making method",
"NSGA-II",
"best solution",
"parameter settings",
"Pareto front",
"algorithm II",
"differential evolution",
"multi-criteria decision-making method",
"algorithm",
"order preference",
"ideal solution",
"friction stir welding process",
"stir welding process",
"demo",
"welding process",
"process parameter settings",
"weld quality",
"technique",
"process parameters",
"solution",
"optimal process parameter settings",
"optimization",
"quality",
"good weld quality",
"ultimate tensile strength",
"model",
"process",
"quality characteristics",
"weld joints",
"nugget zone",
"mechanical properties",
"simulations",
"tensile strength",
"yield stress",
"confirmation experiments",
"selection",
"work",
"simulated results",
"similarity",
"order",
"experiments",
"method",
"results",
"parameters",
"preferences",
"end",
"welds",
"setting",
"hardness",
"characteristics",
"comparison",
"front",
"strength",
"evolution",
"joints",
"elongation",
"properties",
"angle",
"stress",
"zone",
"correlation"
],
"name": "Optimization of friction stir welding process using NSGA-II and DEMO",
"pagination": "947-956",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1086100422"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00521-017-3059-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00521-017-3059-8",
"https://app.dimensions.ai/details/publication/pub.1086100422"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_754.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00521-017-3059-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3059-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3059-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3059-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-3059-8'
This table displays all metadata directly associated to this object as RDF triples.
168 TRIPLES
21 PREDICATES
99 URIs
85 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00521-017-3059-8 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nfdee57891ae64d8d955f761b7eb73b84 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-540-31880-4_36 |
5 | ″ | ″ | sg:pub.10.1007/978-3-642-48318-9 |
6 | ″ | ″ | sg:pub.10.1007/s00170-012-3972-z |
7 | ″ | ″ | sg:pub.10.1007/s00170-012-4154-8 |
8 | ″ | ″ | sg:pub.10.1007/s00500-016-2251-6 |
9 | ″ | ″ | sg:pub.10.1007/s12541-014-0600-x |
10 | ″ | schema:datePublished | 2017-06-19 |
11 | ″ | schema:datePublishedReg | 2017-06-19 |
12 | ″ | schema:description | In welding processes, the selection of optimal process parameter settings is very important to achieve best weld qualities. In this work, neuro-multi-objective evolutionary algorithms (EAs) are proposed to optimize the process parameters in friction stir welding process. Artificial neural network (ANN) models are developed for the simulation of the correlation between process parameters and mechanical properties of the weld using back-propagation algorithm. The weld qualities of the weld joint, such as ultimate tensile strength, yield stress, elongation, bending angle and hardness of the nugget zone, are considered. In order to optimize those quality characteristics, two multi-objective EAs that are non-dominated sorting genetic algorithm II and differential evolution for multi-objective are coupled with the developed ANN models. In the end, multi-criteria decision-making method which is technique for order preference by similarity to the ideal solution is applied on the Pareto front to extract the best solutions. Comparisons are conducted between results obtained from the proposed techniques, and confirmation experiments are performed to verify the simulated results. |
13 | ″ | schema:genre | article |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N54fba55bfb544c73a49abbb15a07fe61 |
16 | ″ | ″ | Na59195846949466a92b7f3d7e47f5eb1 |
17 | ″ | ″ | sg:journal.1104357 |
18 | ″ | schema:keywords | ANN model |
19 | ″ | ″ | NSGA-II |
20 | ″ | ″ | Pareto front |
21 | ″ | ″ | algorithm |
22 | ″ | ″ | algorithm II |
23 | ″ | ″ | angle |
24 | ″ | ″ | artificial neural network model |
25 | ″ | ″ | back-propagation algorithm |
26 | ″ | ″ | best solution |
27 | ″ | ″ | characteristics |
28 | ″ | ″ | comparison |
29 | ″ | ″ | confirmation experiments |
30 | ″ | ″ | correlation |
31 | ″ | ″ | decision-making method |
32 | ″ | ″ | demo |
33 | ″ | ″ | differential evolution |
34 | ″ | ″ | elongation |
35 | ″ | ″ | end |
36 | ″ | ″ | evolution |
37 | ″ | ″ | evolutionary algorithm |
38 | ″ | ″ | experiments |
39 | ″ | ″ | friction stir welding process |
40 | ″ | ″ | front |
41 | ″ | ″ | genetic algorithm II |
42 | ″ | ″ | good weld quality |
43 | ″ | ″ | hardness |
44 | ″ | ″ | ideal solution |
45 | ″ | ″ | joints |
46 | ″ | ″ | mechanical properties |
47 | ″ | ″ | method |
48 | ″ | ″ | model |
49 | ″ | ″ | multi-criteria decision-making method |
50 | ″ | ″ | multi-objective evolutionary algorithm |
51 | ″ | ″ | network model |
52 | ″ | ″ | neural network model |
53 | ″ | ″ | nugget zone |
54 | ″ | ″ | optimal process parameter settings |
55 | ″ | ″ | optimization |
56 | ″ | ″ | order |
57 | ″ | ″ | order preference |
58 | ″ | ″ | parameter settings |
59 | ″ | ″ | parameters |
60 | ″ | ″ | preferences |
61 | ″ | ″ | process |
62 | ″ | ″ | process parameter settings |
63 | ″ | ″ | process parameters |
64 | ″ | ″ | properties |
65 | ″ | ″ | quality |
66 | ″ | ″ | quality characteristics |
67 | ″ | ″ | results |
68 | ″ | ″ | selection |
69 | ″ | ″ | setting |
70 | ″ | ″ | similarity |
71 | ″ | ″ | simulated results |
72 | ″ | ″ | simulations |
73 | ″ | ″ | solution |
74 | ″ | ″ | stir welding process |
75 | ″ | ″ | strength |
76 | ″ | ″ | stress |
77 | ″ | ″ | technique |
78 | ″ | ″ | tensile strength |
79 | ″ | ″ | ultimate tensile strength |
80 | ″ | ″ | weld joints |
81 | ″ | ″ | weld quality |
82 | ″ | ″ | welding process |
83 | ″ | ″ | welds |
84 | ″ | ″ | work |
85 | ″ | ″ | yield stress |
86 | ″ | ″ | zone |
87 | ″ | schema:name | Optimization of friction stir welding process using NSGA-II and DEMO |
88 | ″ | schema:pagination | 947-956 |
89 | ″ | schema:productId | N56ec50f2ef394782a0bde5bb60230bcd |
90 | ″ | ″ | N749876cf86484c81bedcb90f18968843 |
91 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1086100422 |
92 | ″ | ″ | https://doi.org/10.1007/s00521-017-3059-8 |
93 | ″ | schema:sdDatePublished | 2022-08-04T17:05 |
94 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
95 | ″ | schema:sdPublisher | N9456b36674704f7ba5c9ac16ff07292f |
96 | ″ | schema:url | https://doi.org/10.1007/s00521-017-3059-8 |
97 | ″ | sgo:license | sg:explorer/license/ |
98 | ″ | sgo:sdDataset | articles |
99 | ″ | rdf:type | schema:ScholarlyArticle |
100 | N1e479b3e2d3c45788e80fbf711eec68d | rdf:first | sg:person.013145173313.64 |
101 | ″ | rdf:rest | Nfb11c3cac7d0443e973f9f4de68c6365 |
102 | N54fba55bfb544c73a49abbb15a07fe61 | schema:issueNumber | Suppl 2 |
103 | ″ | rdf:type | schema:PublicationIssue |
104 | N56ec50f2ef394782a0bde5bb60230bcd | schema:name | dimensions_id |
105 | ″ | schema:value | pub.1086100422 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | N749876cf86484c81bedcb90f18968843 | schema:name | doi |
108 | ″ | schema:value | 10.1007/s00521-017-3059-8 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | N9456b36674704f7ba5c9ac16ff07292f | schema:name | Springer Nature - SN SciGraph project |
111 | ″ | rdf:type | schema:Organization |
112 | Na59195846949466a92b7f3d7e47f5eb1 | schema:volumeNumber | 31 |
113 | ″ | rdf:type | schema:PublicationVolume |
114 | Nfb11c3cac7d0443e973f9f4de68c6365 | rdf:first | sg:person.07537710321.30 |
115 | ″ | rdf:rest | rdf:nil |
116 | Nfdee57891ae64d8d955f761b7eb73b84 | rdf:first | sg:person.011552232313.06 |
117 | ″ | rdf:rest | N1e479b3e2d3c45788e80fbf711eec68d |
118 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Information and Computing Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Artificial Intelligence and Image Processing |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | sg:journal.1104357 | schema:issn | 0941-0643 |
125 | ″ | ″ | 1433-3058 |
126 | ″ | schema:name | Neural Computing and Applications |
127 | ″ | schema:publisher | Springer Nature |
128 | ″ | rdf:type | schema:Periodical |
129 | sg:person.011552232313.06 | schema:affiliation | grid-institutes:grid.257065.3 |
130 | ″ | schema:familyName | Alkayem |
131 | ″ | schema:givenName | Nizar Faisal |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011552232313.06 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.013145173313.64 | schema:affiliation | grid-institutes:grid.417972.e |
135 | ″ | schema:familyName | Parida |
136 | ″ | schema:givenName | Biswajit |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013145173313.64 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.07537710321.30 | schema:affiliation | grid-institutes:grid.417972.e |
140 | ″ | schema:familyName | Pal |
141 | ″ | schema:givenName | Sukhomay |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537710321.30 |
143 | ″ | rdf:type | schema:Person |
144 | sg:pub.10.1007/978-3-540-31880-4_36 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022038375 |
145 | ″ | ″ | https://doi.org/10.1007/978-3-540-31880-4_36 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1007/978-3-642-48318-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049999080 |
148 | ″ | ″ | https://doi.org/10.1007/978-3-642-48318-9 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1007/s00170-012-3972-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042499688 |
151 | ″ | ″ | https://doi.org/10.1007/s00170-012-3972-z |
152 | ″ | rdf:type | schema:CreativeWork |
153 | sg:pub.10.1007/s00170-012-4154-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028633073 |
154 | ″ | ″ | https://doi.org/10.1007/s00170-012-4154-8 |
155 | ″ | rdf:type | schema:CreativeWork |
156 | sg:pub.10.1007/s00500-016-2251-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052599789 |
157 | ″ | ″ | https://doi.org/10.1007/s00500-016-2251-6 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1007/s12541-014-0600-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049406569 |
160 | ″ | ″ | https://doi.org/10.1007/s12541-014-0600-x |
161 | ″ | rdf:type | schema:CreativeWork |
162 | grid-institutes:grid.257065.3 | schema:alternateName | Department of Engineering Mechanics, Hohai University, 210098, Nanjing, Jiangsu, China |
163 | ″ | schema:name | Department of Engineering Mechanics, Hohai University, 210098, Nanjing, Jiangsu, China |
164 | ″ | ″ | Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India |
165 | ″ | rdf:type | schema:Organization |
166 | grid-institutes:grid.417972.e | schema:alternateName | Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India |
167 | ″ | schema:name | Department of Mechanical Engineering, IIT Guwahati, 781039, Guwahati, India |
168 | ″ | rdf:type | schema:Organization |