Feature selection via a novel chaotic crow search algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Gehad Ismail Sayed, Aboul Ella Hassanien, Ahmad Taher Azar

ABSTRACT

Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh in 2016. The main inspiration of CSA came from crow search mechanism for hiding their food. Like most of the optimization algorithms, CSA suffers from low convergence rate and entrapment in local optima. In this paper, a novel meta-heuristic optimizer, namely chaotic crow search algorithm (CCSA), is proposed to overcome these problems. The proposed CCSA is applied to optimize feature selection problem for 20 benchmark datasets. Ten chaotic maps are employed during the optimization process of CSA. The performance of CCSA is compared with other well-known and recent optimization algorithms. Experimental results reveal the capability of CCSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. Moreover, the results show that CCSA is superior compared to CSA and the other algorithms. In addition, the experiments show that sine chaotic map is the appropriate map to significantly boost the performance of CSA. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-017-2988-6

DOI

http://dx.doi.org/10.1007/s00521-017-2988-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085056925


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cairo University", 
          "id": "https://www.grid.ac/institutes/grid.7776.1", 
          "name": [
            "Faculty of Computers and Information, Cairo University, Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayed", 
        "givenName": "Gehad Ismail", 
        "id": "sg:person.014312633555.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312633555.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cairo University", 
          "id": "https://www.grid.ac/institutes/grid.7776.1", 
          "name": [
            "Faculty of Computers and Information, Cairo University, Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassanien", 
        "givenName": "Aboul Ella", 
        "id": "sg:person.012212264333.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212264333.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nile University", 
          "id": "https://www.grid.ac/institutes/grid.440877.8", 
          "name": [
            "Faculty of Computers and Information, Benha University, Banha, Egypt", 
            "Nanoelectronics Integrated Systems Center (NISC), Nile University, Giza, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azar", 
        "givenName": "Ahmad Taher", 
        "id": "sg:person.0666251553.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666251553.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.patrec.2016.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002969482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004197580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2011.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007172264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.02.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010998555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011052808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2012.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011576983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2003.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015971867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0952813x.2015.1042530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018330551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.08.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018882601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00063-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020136638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021832387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2011.06.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022547666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2006.04.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022651758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2009.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025311419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4754(01)00363-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027271010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2012.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028820478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.01.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030445915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-009-0270-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031320732", 
          "https://doi.org/10.1007/s00707-009-0270-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-009-0270-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031320732", 
          "https://doi.org/10.1007/s00707-009-0270-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2014.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031677980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2007.02.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033220816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.06.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034628147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-014-1597-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035261917", 
          "https://doi.org/10.1007/s00521-014-1597-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2013.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036158139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2013.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036714548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-48490-7_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037594550", 
          "https://doi.org/10.1007/978-3-319-48490-7_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038282608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039405262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040424773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-013-1433-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041179981", 
          "https://doi.org/10.1007/s00521-013-1433-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2006.09.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041418983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-5281-2013-47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041772334", 
          "https://doi.org/10.1186/1687-5281-2013-47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006676015154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043925148", 
          "https://doi.org/10.1023/a:1006676015154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvci.1999.0413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049165682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(01)00046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2006.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052244618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/019697298125678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052283466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053122524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053122524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754970107600201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053394783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754970107600201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053394783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4238/2013.october.10.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072391798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/inista.2016.7571853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094213773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/socpar.2015.7492775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095237495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnc.2008.588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095388115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102728208"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh in 2016. The main inspiration of CSA came from crow search mechanism for hiding their food. Like most of the optimization algorithms, CSA suffers from low convergence rate and entrapment in local optima. In this paper, a novel meta-heuristic optimizer, namely chaotic crow search algorithm (CCSA), is proposed to overcome these problems. The proposed CCSA is applied to optimize feature selection problem for 20 benchmark datasets. Ten chaotic maps are employed during the optimization process of CSA. The performance of CCSA is compared with other well-known and recent optimization algorithms. Experimental results reveal the capability of CCSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. Moreover, the results show that CCSA is superior compared to CSA and the other algorithms. In addition, the experiments show that sine chaotic map is the appropriate map to significantly boost the performance of CSA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-017-2988-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Feature selection via a novel chaotic crow search algorithm", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9246959469222da131c253db677d9c250b6363aea8e0cb0821056d77ac041a9b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-017-2988-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085056925"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-017-2988-6", 
      "https://app.dimensions.ai/details/publication/pub.1085056925"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00521-017-2988-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2988-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2988-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2988-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2988-6'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      72 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-017-2988-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ne4ae3e9ccb5847dba8f488c553e6aa4e
4 schema:citation sg:pub.10.1007/978-3-319-48490-7_36
5 sg:pub.10.1007/s00521-013-1433-8
6 sg:pub.10.1007/s00521-014-1597-x
7 sg:pub.10.1007/s00707-009-0270-4
8 sg:pub.10.1023/a:1006676015154
9 sg:pub.10.1023/a:1008202821328
10 sg:pub.10.1186/1687-5281-2013-47
11 https://doi.org/10.1006/jvci.1999.0413
12 https://doi.org/10.1016/j.advengsoft.2013.12.007
13 https://doi.org/10.1016/j.aeue.2012.01.015
14 https://doi.org/10.1016/j.amc.2006.09.087
15 https://doi.org/10.1016/j.amc.2007.02.103
16 https://doi.org/10.1016/j.asoc.2013.10.024
17 https://doi.org/10.1016/j.asoc.2016.02.039
18 https://doi.org/10.1016/j.chaos.2003.12.032
19 https://doi.org/10.1016/j.chaos.2006.04.057
20 https://doi.org/10.1016/j.chaos.2009.04.019
21 https://doi.org/10.1016/j.cnsns.2012.06.009
22 https://doi.org/10.1016/j.compstruc.2011.08.002
23 https://doi.org/10.1016/j.compstruc.2016.03.001
24 https://doi.org/10.1016/j.ejor.2010.02.032
25 https://doi.org/10.1016/j.epsr.2006.10.006
26 https://doi.org/10.1016/j.eswa.2007.08.088
27 https://doi.org/10.1016/j.eswa.2013.01.032
28 https://doi.org/10.1016/j.ins.2012.05.009
29 https://doi.org/10.1016/j.ins.2014.02.123
30 https://doi.org/10.1016/j.ins.2016.09.026
31 https://doi.org/10.1016/j.ins.2016.09.032
32 https://doi.org/10.1016/j.mcm.2011.06.048
33 https://doi.org/10.1016/j.neucom.2015.06.083
34 https://doi.org/10.1016/j.patcog.2014.04.005
35 https://doi.org/10.1016/j.patrec.2016.03.014
36 https://doi.org/10.1016/j.swevo.2011.02.002
37 https://doi.org/10.1016/s0004-3702(97)00043-x
38 https://doi.org/10.1016/s0004-3702(97)00063-5
39 https://doi.org/10.1016/s0031-3203(01)00046-2
40 https://doi.org/10.1016/s0378-4754(01)00363-9
41 https://doi.org/10.1080/019697298125678
42 https://doi.org/10.1080/0952813x.2015.1042530
43 https://doi.org/10.1109/icnc.2008.588
44 https://doi.org/10.1109/icnn.1995.488968
45 https://doi.org/10.1109/inista.2016.7571853
46 https://doi.org/10.1109/socpar.2015.7492775
47 https://doi.org/10.1126/science.286.5439.531
48 https://doi.org/10.1177/003754970107600201
49 https://doi.org/10.2307/3001968
50 https://doi.org/10.4238/2013.october.10.12
51 schema:datePublished 2019-01
52 schema:datePublishedReg 2019-01-01
53 schema:description Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh in 2016. The main inspiration of CSA came from crow search mechanism for hiding their food. Like most of the optimization algorithms, CSA suffers from low convergence rate and entrapment in local optima. In this paper, a novel meta-heuristic optimizer, namely chaotic crow search algorithm (CCSA), is proposed to overcome these problems. The proposed CCSA is applied to optimize feature selection problem for 20 benchmark datasets. Ten chaotic maps are employed during the optimization process of CSA. The performance of CCSA is compared with other well-known and recent optimization algorithms. Experimental results reveal the capability of CCSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. Moreover, the results show that CCSA is superior compared to CSA and the other algorithms. In addition, the experiments show that sine chaotic map is the appropriate map to significantly boost the performance of CSA.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf sg:journal.1104357
58 schema:name Feature selection via a novel chaotic crow search algorithm
59 schema:pagination 1-18
60 schema:productId N3713069b2eb148f2865f377976296bdb
61 N3d863d65b8e4466d99b5a3f1d1159574
62 N83d814340c7a4e359dcdcb3d804e3c29
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085056925
64 https://doi.org/10.1007/s00521-017-2988-6
65 schema:sdDatePublished 2019-04-10T15:47
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N0e1fdbb083bc41e4ac376eb063d26543
68 schema:url http://link.springer.com/10.1007/s00521-017-2988-6
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0e1fdbb083bc41e4ac376eb063d26543 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N201cbb1ba20c4962b9659f2ea8647588 rdf:first sg:person.012212264333.42
75 rdf:rest N778b0f045a654257a06d890a8776ea50
76 N3713069b2eb148f2865f377976296bdb schema:name dimensions_id
77 schema:value pub.1085056925
78 rdf:type schema:PropertyValue
79 N3d863d65b8e4466d99b5a3f1d1159574 schema:name readcube_id
80 schema:value 9246959469222da131c253db677d9c250b6363aea8e0cb0821056d77ac041a9b
81 rdf:type schema:PropertyValue
82 N778b0f045a654257a06d890a8776ea50 rdf:first sg:person.0666251553.03
83 rdf:rest rdf:nil
84 N83d814340c7a4e359dcdcb3d804e3c29 schema:name doi
85 schema:value 10.1007/s00521-017-2988-6
86 rdf:type schema:PropertyValue
87 Ne4ae3e9ccb5847dba8f488c553e6aa4e rdf:first sg:person.014312633555.64
88 rdf:rest N201cbb1ba20c4962b9659f2ea8647588
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Numerical and Computational Mathematics
94 rdf:type schema:DefinedTerm
95 sg:journal.1104357 schema:issn 0941-0643
96 1433-3058
97 schema:name Neural Computing and Applications
98 rdf:type schema:Periodical
99 sg:person.012212264333.42 schema:affiliation https://www.grid.ac/institutes/grid.7776.1
100 schema:familyName Hassanien
101 schema:givenName Aboul Ella
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212264333.42
103 rdf:type schema:Person
104 sg:person.014312633555.64 schema:affiliation https://www.grid.ac/institutes/grid.7776.1
105 schema:familyName Sayed
106 schema:givenName Gehad Ismail
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312633555.64
108 rdf:type schema:Person
109 sg:person.0666251553.03 schema:affiliation https://www.grid.ac/institutes/grid.440877.8
110 schema:familyName Azar
111 schema:givenName Ahmad Taher
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666251553.03
113 rdf:type schema:Person
114 sg:pub.10.1007/978-3-319-48490-7_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037594550
115 https://doi.org/10.1007/978-3-319-48490-7_36
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00521-013-1433-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041179981
118 https://doi.org/10.1007/s00521-013-1433-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00521-014-1597-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035261917
121 https://doi.org/10.1007/s00521-014-1597-x
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00707-009-0270-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031320732
124 https://doi.org/10.1007/s00707-009-0270-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1006676015154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043925148
127 https://doi.org/10.1023/a:1006676015154
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
130 https://doi.org/10.1023/a:1008202821328
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/1687-5281-2013-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041772334
133 https://doi.org/10.1186/1687-5281-2013-47
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1006/jvci.1999.0413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049165682
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.advengsoft.2013.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036158139
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.aeue.2012.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028820478
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.amc.2006.09.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041418983
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.amc.2007.02.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033220816
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.asoc.2013.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036714548
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.asoc.2016.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004197580
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.chaos.2003.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015971867
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.chaos.2006.04.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022651758
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.chaos.2009.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025311419
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.cnsns.2012.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053122524
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.compstruc.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007172264
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.compstruc.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021832387
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ejor.2010.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039405262
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.epsr.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052244618
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.eswa.2007.08.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018882601
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.eswa.2013.01.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030445915
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ins.2012.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011576983
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ins.2014.02.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010998555
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ins.2016.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040424773
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ins.2016.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038282608
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.mcm.2011.06.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022547666
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.neucom.2015.06.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034628147
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.patcog.2014.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031677980
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.patrec.2016.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002969482
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.swevo.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011052808
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0004-3702(97)00043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014012
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0004-3702(97)00063-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020136638
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0031-3203(01)00046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050869582
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0378-4754(01)00363-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027271010
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/019697298125678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052283466
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/0952813x.2015.1042530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018330551
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/icnc.2008.588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095388115
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/inista.2016.7571853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094213773
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/socpar.2015.7492775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095237495
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1177/003754970107600201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053394783
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2307/3001968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102728208
212 rdf:type schema:CreativeWork
213 https://doi.org/10.4238/2013.october.10.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072391798
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.440877.8 schema:alternateName Nile University
216 schema:name Faculty of Computers and Information, Benha University, Banha, Egypt
217 Nanoelectronics Integrated Systems Center (NISC), Nile University, Giza, Egypt
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.7776.1 schema:alternateName Cairo University
220 schema:name Faculty of Computers and Information, Cairo University, Cairo, Egypt
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...