Extreme learning machine model for water network management View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04-22

AUTHORS

Ahmed M. A. Sattar, Ömer Faruk Ertuğrul, B. Gharabaghi, E. A. McBean, J. Cao

ABSTRACT

A novel failure rate prediction model is developed by the extreme learning machine (ELM) to provide key information needed for optimum ongoing maintenance/rehabilitation of a water network, meaning the estimated times for the next failures of individual pipes within the network. The developed ELM model is trained using more than 9500 instances of pipe failure in the Greater Toronto Area, Canada from 1920 to 2005 with pipe attributes as inputs, including pipe length, diameter, material, and previously recorded failures. The models show recent, extensive usage of pipe coating with cement mortar and cathodic protection has significantly increased their lifespan. The predictive model includes the pipe protection method as pipe attributes and can reflect in its predictions, the effect of different pipe protection methods on the expected time to the next pipe failure. The developed ELM has a superior prediction accuracy relative to other available machine learning algorithms such as feed-forward artificial neural network that is trained by backpropagation, support vector regression, and non-linear regression. The utility of the models provides useful inputs when planning and budgeting for watermain inspection, maintenance, and rehabilitation. More... »

PAGES

157-169

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-017-2987-7

DOI

http://dx.doi.org/10.1007/s00521-017-2987-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085040288


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Irrigation & Hydraulics, Faculty of Engineering, Cairo University, Giza, Egypt", 
          "id": "http://www.grid.ac/institutes/grid.7776.1", 
          "name": [
            "Department of Irrigation & Hydraulics, Faculty of Engineering, Cairo University, Giza, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sattar", 
        "givenName": "Ahmed M. A.", 
        "id": "sg:person.016437441445.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016437441445.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Electronics Engineering, Batman University, Batman, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.449363.f", 
          "name": [
            "Department of Electrical and Electronics Engineering, Batman University, Batman, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ertu\u011frul", 
        "givenName": "\u00d6mer Faruk", 
        "id": "sg:person.010432772057.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010432772057.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering, University of Guelph, NIG 2W1, Guelph, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "School of Engineering, University of Guelph, NIG 2W1, Guelph, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gharabaghi", 
        "givenName": "B.", 
        "id": "sg:person.0771646566.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771646566.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering, University of Guelph, NIG 2W1, Guelph, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "School of Engineering, University of Guelph, NIG 2W1, Guelph, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McBean", 
        "givenName": "E. A.", 
        "id": "sg:person.011200034013.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011200034013.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Control, Hangzhou Dianzi University, 310018, Zhejiang, China", 
          "id": "http://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Institute of Information and Control, Hangzhou Dianzi University, 310018, Zhejiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "J.", 
        "id": "sg:person.014245132055.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014245132055.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11269-015-0936-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043431346", 
          "https://doi.org/10.1007/s11269-015-0936-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-1918-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045944887", 
          "https://doi.org/10.1007/s00521-015-1918-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-015-1108-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024935867", 
          "https://doi.org/10.1007/s11269-015-1108-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-016-1241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052416121", 
          "https://doi.org/10.1007/s11269-016-1241-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-013-1522-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049672801", 
          "https://doi.org/10.1007/s00521-013-1522-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-2086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034057262", 
          "https://doi.org/10.1007/s00521-015-2086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-22", 
    "datePublishedReg": "2017-04-22", 
    "description": "A novel failure rate prediction model is developed by the extreme learning machine (ELM) to provide key information needed for optimum ongoing maintenance/rehabilitation of a water network, meaning the estimated times for the next failures of individual pipes within the network. The developed ELM model is trained using more than 9500 instances of pipe failure in the Greater Toronto Area, Canada from 1920 to 2005 with pipe attributes as inputs, including pipe length, diameter, material, and previously recorded failures. The models show recent, extensive usage of pipe coating with cement mortar and cathodic protection has significantly increased their lifespan. The predictive model includes the pipe protection method as pipe attributes and can reflect in its predictions, the effect of different pipe protection methods on the expected time to the next pipe failure. The developed ELM has a superior prediction accuracy relative to other available machine learning algorithms such as feed-forward artificial neural network that is trained by backpropagation, support vector regression, and non-linear regression. The utility of the models provides useful inputs when planning and budgeting for watermain inspection, maintenance, and rehabilitation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00521-017-2987-7", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "extreme learning machine", 
      "pipe failure", 
      "pipe attributes", 
      "feed-forward artificial neural network", 
      "failure rate prediction model", 
      "artificial neural network", 
      "water network management", 
      "superior prediction accuracy", 
      "protection methods", 
      "support vector regression", 
      "network management", 
      "cement mortar", 
      "pipe length", 
      "cathodic protection", 
      "neural network", 
      "learning machine", 
      "pipe coating", 
      "rate prediction model", 
      "available machines", 
      "individual pipes", 
      "vector regression", 
      "ELM model", 
      "machine model", 
      "prediction accuracy", 
      "next failure", 
      "water network", 
      "network", 
      "extensive usage", 
      "machine", 
      "prediction model", 
      "key information", 
      "predictive model", 
      "backpropagation", 
      "non-linear regression", 
      "pipe", 
      "mortar", 
      "coatings", 
      "attributes", 
      "algorithm", 
      "input", 
      "useful input", 
      "model", 
      "usage", 
      "materials", 
      "accuracy", 
      "information", 
      "method", 
      "instances", 
      "inspection", 
      "diameter", 
      "failure", 
      "Greater Toronto Area", 
      "prediction", 
      "time", 
      "Toronto Area", 
      "management", 
      "length", 
      "utility", 
      "regression", 
      "maintenance", 
      "effect", 
      "area", 
      "protection", 
      "budgeting", 
      "lifespan", 
      "rehabilitation", 
      "Canada"
    ], 
    "name": "Extreme learning machine model for water network management", 
    "pagination": "157-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085040288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-017-2987-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-017-2987-7", 
      "https://app.dimensions.ai/details/publication/pub.1085040288"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_748.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00521-017-2987-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2987-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2987-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2987-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-017-2987-7'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      100 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-017-2987-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:09
4 anzsrc-for:0905
5 schema:author N25de4ed9761d44038aa3501989ff5ae7
6 schema:citation sg:pub.10.1007/s00521-013-1522-8
7 sg:pub.10.1007/s00521-015-1918-8
8 sg:pub.10.1007/s00521-015-2086-6
9 sg:pub.10.1007/s11269-015-0936-8
10 sg:pub.10.1007/s11269-015-1108-6
11 sg:pub.10.1007/s11269-016-1241-x
12 sg:pub.10.1023/a:1008202821328
13 schema:datePublished 2017-04-22
14 schema:datePublishedReg 2017-04-22
15 schema:description A novel failure rate prediction model is developed by the extreme learning machine (ELM) to provide key information needed for optimum ongoing maintenance/rehabilitation of a water network, meaning the estimated times for the next failures of individual pipes within the network. The developed ELM model is trained using more than 9500 instances of pipe failure in the Greater Toronto Area, Canada from 1920 to 2005 with pipe attributes as inputs, including pipe length, diameter, material, and previously recorded failures. The models show recent, extensive usage of pipe coating with cement mortar and cathodic protection has significantly increased their lifespan. The predictive model includes the pipe protection method as pipe attributes and can reflect in its predictions, the effect of different pipe protection methods on the expected time to the next pipe failure. The developed ELM has a superior prediction accuracy relative to other available machine learning algorithms such as feed-forward artificial neural network that is trained by backpropagation, support vector regression, and non-linear regression. The utility of the models provides useful inputs when planning and budgeting for watermain inspection, maintenance, and rehabilitation.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N00987c91967c427fba563c2cbc9a5372
19 N768c6d59723a48b6b83e3f153fa83f43
20 sg:journal.1104357
21 schema:keywords Canada
22 ELM model
23 Greater Toronto Area
24 Toronto Area
25 accuracy
26 algorithm
27 area
28 artificial neural network
29 attributes
30 available machines
31 backpropagation
32 budgeting
33 cathodic protection
34 cement mortar
35 coatings
36 diameter
37 effect
38 extensive usage
39 extreme learning machine
40 failure
41 failure rate prediction model
42 feed-forward artificial neural network
43 individual pipes
44 information
45 input
46 inspection
47 instances
48 key information
49 learning machine
50 length
51 lifespan
52 machine
53 machine model
54 maintenance
55 management
56 materials
57 method
58 model
59 mortar
60 network
61 network management
62 neural network
63 next failure
64 non-linear regression
65 pipe
66 pipe attributes
67 pipe coating
68 pipe failure
69 pipe length
70 prediction
71 prediction accuracy
72 prediction model
73 predictive model
74 protection
75 protection methods
76 rate prediction model
77 regression
78 rehabilitation
79 superior prediction accuracy
80 support vector regression
81 time
82 usage
83 useful input
84 utility
85 vector regression
86 water network
87 water network management
88 schema:name Extreme learning machine model for water network management
89 schema:pagination 157-169
90 schema:productId N04ae1d0b56db4e189c4c458f8f0348ae
91 Nd12f92861f1045979f061e342044a63b
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085040288
93 https://doi.org/10.1007/s00521-017-2987-7
94 schema:sdDatePublished 2022-08-04T17:05
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N01e645d949804d03859f26c82417f895
97 schema:url https://doi.org/10.1007/s00521-017-2987-7
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N00987c91967c427fba563c2cbc9a5372 schema:volumeNumber 31
102 rdf:type schema:PublicationVolume
103 N01e645d949804d03859f26c82417f895 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N04ae1d0b56db4e189c4c458f8f0348ae schema:name doi
106 schema:value 10.1007/s00521-017-2987-7
107 rdf:type schema:PropertyValue
108 N07d422813070401690e01d1be06cc050 rdf:first sg:person.0771646566.23
109 rdf:rest Nd12721147cc645e3875d76014bb88d01
110 N25de4ed9761d44038aa3501989ff5ae7 rdf:first sg:person.016437441445.94
111 rdf:rest Na114c6803e7b4ef1b6533e3cf986e2ba
112 N47d8ccd377f147f2aca80fbffa54ab7e rdf:first sg:person.014245132055.03
113 rdf:rest rdf:nil
114 N768c6d59723a48b6b83e3f153fa83f43 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Na114c6803e7b4ef1b6533e3cf986e2ba rdf:first sg:person.010432772057.65
117 rdf:rest N07d422813070401690e01d1be06cc050
118 Nd12721147cc645e3875d76014bb88d01 rdf:first sg:person.011200034013.34
119 rdf:rest N47d8ccd377f147f2aca80fbffa54ab7e
120 Nd12f92861f1045979f061e342044a63b schema:name dimensions_id
121 schema:value pub.1085040288
122 rdf:type schema:PropertyValue
123 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information and Computing Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
127 schema:name Artificial Intelligence and Image Processing
128 rdf:type schema:DefinedTerm
129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
130 schema:name Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
133 schema:name Civil Engineering
134 rdf:type schema:DefinedTerm
135 sg:journal.1104357 schema:issn 0941-0643
136 1433-3058
137 schema:name Neural Computing and Applications
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.010432772057.65 schema:affiliation grid-institutes:grid.449363.f
141 schema:familyName Ertuğrul
142 schema:givenName Ömer Faruk
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010432772057.65
144 rdf:type schema:Person
145 sg:person.011200034013.34 schema:affiliation grid-institutes:grid.34429.38
146 schema:familyName McBean
147 schema:givenName E. A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011200034013.34
149 rdf:type schema:Person
150 sg:person.014245132055.03 schema:affiliation grid-institutes:grid.411963.8
151 schema:familyName Cao
152 schema:givenName J.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014245132055.03
154 rdf:type schema:Person
155 sg:person.016437441445.94 schema:affiliation grid-institutes:grid.7776.1
156 schema:familyName Sattar
157 schema:givenName Ahmed M. A.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016437441445.94
159 rdf:type schema:Person
160 sg:person.0771646566.23 schema:affiliation grid-institutes:grid.34429.38
161 schema:familyName Gharabaghi
162 schema:givenName B.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771646566.23
164 rdf:type schema:Person
165 sg:pub.10.1007/s00521-013-1522-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049672801
166 https://doi.org/10.1007/s00521-013-1522-8
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00521-015-1918-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045944887
169 https://doi.org/10.1007/s00521-015-1918-8
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00521-015-2086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034057262
172 https://doi.org/10.1007/s00521-015-2086-6
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11269-015-0936-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043431346
175 https://doi.org/10.1007/s11269-015-0936-8
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11269-015-1108-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024935867
178 https://doi.org/10.1007/s11269-015-1108-6
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11269-016-1241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052416121
181 https://doi.org/10.1007/s11269-016-1241-x
182 rdf:type schema:CreativeWork
183 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
184 https://doi.org/10.1023/a:1008202821328
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.34429.38 schema:alternateName School of Engineering, University of Guelph, NIG 2W1, Guelph, Ontario, Canada
187 schema:name School of Engineering, University of Guelph, NIG 2W1, Guelph, Ontario, Canada
188 rdf:type schema:Organization
189 grid-institutes:grid.411963.8 schema:alternateName Institute of Information and Control, Hangzhou Dianzi University, 310018, Zhejiang, China
190 schema:name Institute of Information and Control, Hangzhou Dianzi University, 310018, Zhejiang, China
191 rdf:type schema:Organization
192 grid-institutes:grid.449363.f schema:alternateName Department of Electrical and Electronics Engineering, Batman University, Batman, Turkey
193 schema:name Department of Electrical and Electronics Engineering, Batman University, Batman, Turkey
194 rdf:type schema:Organization
195 grid-institutes:grid.7776.1 schema:alternateName Department of Irrigation & Hydraulics, Faculty of Engineering, Cairo University, Giza, Egypt
196 schema:name Department of Irrigation & Hydraulics, Faculty of Engineering, Cairo University, Giza, Egypt
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...