Using artificial neural networks to scale and infer vegetation media phase functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Paula Gómez-Pérez, Rafael F. S. Caldeirinha, Telmo Rui Fernandes, Iñigo Cuiñas

ABSTRACT

Accurate vegetation models usually rely on experimental data obtained by means of measurement campaigns. Nowadays, RET and dRET models provide a realistic characterization of vegetation volumes, including not only in-excess attenuation, but also scattering, diffraction and depolarization. Nevertheless, both approaches imply the characterization of the forest media by means of a range of parameters, and thus, the construction of a simple parameter extraction method based on propagation measurements is required. Moreover, when dealing with experimental data, two common problems must be usually overcome: the scaling of the vegetation mass parameters into different dimensions, and the scarce number of frequencies available within the experimental data set. This paper proposes the use of Artificial Neural Networks as accurate and reliable tools able to scale vegetation parameters for varying physical dimensions and to predict them for new frequencies. This proposal provides a RMS error lower than 1 dB when compared to unbiased measured data, leading to an accurate parameter extracting method, while being simple enough for not to increase the computational cost of the model. More... »

PAGES

1563-1574

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-016-2778-6

DOI

http://dx.doi.org/10.1007/s00521-016-2778-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001023853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro Universitario de la Defensa", 
          "id": "https://www.grid.ac/institutes/grid.467120.6", 
          "name": [
            "Centro Universitario de la Defensa, Escuela Naval Militar (Defence University Centre, Spanish Naval Academy), Plaza de Espa\u00f1a, s/n, 36920, Mar\u00edn, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez-P\u00e9rez", 
        "givenName": "Paula", 
        "id": "sg:person.07710670203.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07710670203.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of South Wales", 
          "id": "https://www.grid.ac/institutes/grid.410658.e", 
          "name": [
            "Instituto de Telecomunica\u00e7\u00f5es, Leiria, Portugal", 
            "School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal", 
            "Faculty of Engineering, University of South Wales, Pontypridd, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldeirinha", 
        "givenName": "Rafael F. S.", 
        "id": "sg:person.014022714422.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014022714422.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of South Wales", 
          "id": "https://www.grid.ac/institutes/grid.410658.e", 
          "name": [
            "Instituto de Telecomunica\u00e7\u00f5es, Leiria, Portugal", 
            "School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal", 
            "Faculty of Engineering, University of South Wales, Pontypridd, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fernandes", 
        "givenName": "Telmo Rui", 
        "id": "sg:person.016216410527.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216410527.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "Dept. de Teor\u00eda do Sinal e Comunicaci\u00f3ns, Universidade de Vigo, Avda. Maxwell, s/n, 36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui\u00f1as", 
        "givenName": "I\u00f1igo", 
        "id": "sg:person.014560614013.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560614013.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1049/iet-map.2010.0158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056830636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-map:19981883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056856768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietcom/e88-b.6.2411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059666292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.3026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.868869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lawp.2015.2493515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061345487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2007.891841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061496928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2012.2201123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061500100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2004.831229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aps.2016.7696737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094821142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vtcf.2006.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094838632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetecs.2005.1543245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095274214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ic.2007.1554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096111051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp:20030206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098699604"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Accurate vegetation models usually rely on experimental data obtained by means of measurement campaigns. Nowadays, RET and dRET models provide a realistic characterization of vegetation volumes, including not only in-excess attenuation, but also scattering, diffraction and depolarization. Nevertheless, both approaches imply the characterization of the forest media by means of a range of parameters, and thus, the construction of a simple parameter extraction method based on propagation measurements is required. Moreover, when dealing with experimental data, two common problems must be usually overcome: the scaling of the vegetation mass parameters into different dimensions, and the scarce number of frequencies available within the experimental data set. This paper proposes the use of Artificial Neural Networks as accurate and reliable tools able to scale vegetation parameters for varying physical dimensions and to predict them for new frequencies. This proposal provides a RMS error lower than 1 dB when compared to unbiased measured data, leading to an accurate parameter extracting method, while being simple enough for not to increase the computational cost of the model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-016-2778-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Using artificial neural networks to scale and infer vegetation media phase functions", 
    "pagination": "1563-1574", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04e0eeacbb91a8bc1fbe58146bc010f4c8bad139d42588bb0bc168ff5e6a6808"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-016-2778-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001023853"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-016-2778-6", 
      "https://app.dimensions.ai/details/publication/pub.1001023853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-016-2778-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2778-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2778-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2778-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2778-6'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-016-2778-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N481cc5cb56774ca5b2dccb47fa352777
4 schema:citation https://doi.org/10.1049/cp:20030206
5 https://doi.org/10.1049/ic.2007.1554
6 https://doi.org/10.1049/iet-map.2010.0158
7 https://doi.org/10.1049/ip-map:19981883
8 https://doi.org/10.1093/ietcom/e88-b.6.2411
9 https://doi.org/10.1109/36.3026
10 https://doi.org/10.1109/36.868869
11 https://doi.org/10.1109/aps.2016.7696737
12 https://doi.org/10.1109/lawp.2015.2493515
13 https://doi.org/10.1109/tap.2007.891841
14 https://doi.org/10.1109/tap.2012.2201123
15 https://doi.org/10.1109/tgrs.2004.831229
16 https://doi.org/10.1109/vetecs.2005.1543245
17 https://doi.org/10.1109/vtcf.2006.54
18 schema:datePublished 2018-06
19 schema:datePublishedReg 2018-06-01
20 schema:description Accurate vegetation models usually rely on experimental data obtained by means of measurement campaigns. Nowadays, RET and dRET models provide a realistic characterization of vegetation volumes, including not only in-excess attenuation, but also scattering, diffraction and depolarization. Nevertheless, both approaches imply the characterization of the forest media by means of a range of parameters, and thus, the construction of a simple parameter extraction method based on propagation measurements is required. Moreover, when dealing with experimental data, two common problems must be usually overcome: the scaling of the vegetation mass parameters into different dimensions, and the scarce number of frequencies available within the experimental data set. This paper proposes the use of Artificial Neural Networks as accurate and reliable tools able to scale vegetation parameters for varying physical dimensions and to predict them for new frequencies. This proposal provides a RMS error lower than 1 dB when compared to unbiased measured data, leading to an accurate parameter extracting method, while being simple enough for not to increase the computational cost of the model.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N375e70de99c14f908792c5672a18a29d
25 N9bbab96e52d94bc391455cb90b7180ee
26 sg:journal.1104357
27 schema:name Using artificial neural networks to scale and infer vegetation media phase functions
28 schema:pagination 1563-1574
29 schema:productId N15a4b1c8094e46c4812da20b272dfa30
30 N594f2e4d74b34a88bb084df36dad504b
31 Nc216d68dac0e48f780ab33bad714b1d8
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001023853
33 https://doi.org/10.1007/s00521-016-2778-6
34 schema:sdDatePublished 2019-04-11T09:57
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N09ad36f4097a472b8dc1c23ed366144e
37 schema:url https://link.springer.com/10.1007%2Fs00521-016-2778-6
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N09ad36f4097a472b8dc1c23ed366144e schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N15a4b1c8094e46c4812da20b272dfa30 schema:name dimensions_id
44 schema:value pub.1001023853
45 rdf:type schema:PropertyValue
46 N375e70de99c14f908792c5672a18a29d schema:issueNumber 12
47 rdf:type schema:PublicationIssue
48 N3b33b72fdb6e47d7a1293b7bdd6162bb rdf:first sg:person.014022714422.68
49 rdf:rest Na3c5e96acf604fccbfa714e69568da8b
50 N481cc5cb56774ca5b2dccb47fa352777 rdf:first sg:person.07710670203.11
51 rdf:rest N3b33b72fdb6e47d7a1293b7bdd6162bb
52 N4e4a32d5987a4873a8fa2d607840ef4f rdf:first sg:person.014560614013.01
53 rdf:rest rdf:nil
54 N594f2e4d74b34a88bb084df36dad504b schema:name doi
55 schema:value 10.1007/s00521-016-2778-6
56 rdf:type schema:PropertyValue
57 N9bbab96e52d94bc391455cb90b7180ee schema:volumeNumber 29
58 rdf:type schema:PublicationVolume
59 Na3c5e96acf604fccbfa714e69568da8b rdf:first sg:person.016216410527.06
60 rdf:rest N4e4a32d5987a4873a8fa2d607840ef4f
61 Nc216d68dac0e48f780ab33bad714b1d8 schema:name readcube_id
62 schema:value 04e0eeacbb91a8bc1fbe58146bc010f4c8bad139d42588bb0bc168ff5e6a6808
63 rdf:type schema:PropertyValue
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:journal.1104357 schema:issn 0941-0643
71 1433-3058
72 schema:name Neural Computing and Applications
73 rdf:type schema:Periodical
74 sg:person.014022714422.68 schema:affiliation https://www.grid.ac/institutes/grid.410658.e
75 schema:familyName Caldeirinha
76 schema:givenName Rafael F. S.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014022714422.68
78 rdf:type schema:Person
79 sg:person.014560614013.01 schema:affiliation https://www.grid.ac/institutes/grid.6312.6
80 schema:familyName Cuiñas
81 schema:givenName Iñigo
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560614013.01
83 rdf:type schema:Person
84 sg:person.016216410527.06 schema:affiliation https://www.grid.ac/institutes/grid.410658.e
85 schema:familyName Fernandes
86 schema:givenName Telmo Rui
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216410527.06
88 rdf:type schema:Person
89 sg:person.07710670203.11 schema:affiliation https://www.grid.ac/institutes/grid.467120.6
90 schema:familyName Gómez-Pérez
91 schema:givenName Paula
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07710670203.11
93 rdf:type schema:Person
94 https://doi.org/10.1049/cp:20030206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098699604
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1049/ic.2007.1554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096111051
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1049/iet-map.2010.0158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056830636
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1049/ip-map:19981883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056856768
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1093/ietcom/e88-b.6.2411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059666292
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/36.3026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161113
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/36.868869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162462
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/aps.2016.7696737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094821142
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/lawp.2015.2493515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061345487
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tap.2007.891841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061496928
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tap.2012.2201123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061500100
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tgrs.2004.831229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609181
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/vetecs.2005.1543245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095274214
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/vtcf.2006.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094838632
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.410658.e schema:alternateName University of South Wales
123 schema:name Faculty of Engineering, University of South Wales, Pontypridd, United Kingdom
124 Instituto de Telecomunicações, Leiria, Portugal
125 School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.467120.6 schema:alternateName Centro Universitario de la Defensa
128 schema:name Centro Universitario de la Defensa, Escuela Naval Militar (Defence University Centre, Spanish Naval Academy), Plaza de España, s/n, 36920, Marín, Spain
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.6312.6 schema:alternateName University of Vigo
131 schema:name Dept. de Teoría do Sinal e Comunicacións, Universidade de Vigo, Avda. Maxwell, s/n, 36310, Vigo, Spain
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...