The use of neural networks for the prediction of cone penetration resistance of silty sands View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Yusuf Erzin, Nurhan Ecemis

ABSTRACT

In this study, an artificial neural network (ANN) model was developed to predict the cone penetration resistance of silty sands. To achieve this, the data sets reported by Ecemis and Karaman, including the results of three high-quality field tests, namely piezocone penetration test, pore pressure dissipation tests, and direct push permeability tests performed at 20 different locations on the northern coast of the Izmir Gulf in Turkey, have been used in the development of the ANN model. The ANN model consisted of three input parameters (relative density, fines content, and horizontal coefficient of consolidation) and a single output parameter (normalized cone penetration resistance). The results obtained from the ANN model were compared with those obtained from the field tests. It is found that the ANN model is efficient in determining the cone penetration resistance of silty sands and yields cone penetration resistance values that are very close to those obtained from the field tests. Additionally, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and scaled percent error were computed to examine the performance of the ANN model developed. The performance level attained in the ANN model shows that the ANN model developed in this study can be employed for predicting cone penetration of silty sands quite efficiently. More... »

PAGES

727-736

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-016-2371-z

DOI

http://dx.doi.org/10.1007/s00521-016-2371-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009805492


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Celal Bayar University", 
          "id": "https://www.grid.ac/institutes/grid.411688.2", 
          "name": [
            "Department of Civil Engineering, Faculty of Engineering, Celal Bayar University, 45140, Manisa, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erzin", 
        "givenName": "Yusuf", 
        "id": "sg:person.01103335505.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103335505.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Izmir Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.419609.3", 
          "name": [
            "Department of Civil Engineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ecemis", 
        "givenName": "Nurhan", 
        "id": "sg:person.013716154047.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716154047.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2007.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001117501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839514.2013.823326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002090744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2012.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002151329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2003.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002343563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311697218719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002892483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-1302-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005216651", 
          "https://doi.org/10.1007/s00521-012-1302-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t09-094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005390617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-014-0606-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006199607", 
          "https://doi.org/10.1007/s10064-014-0606-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2009.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006575553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0168-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007479143", 
          "https://doi.org/10.1007/s10064-008-0168-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0168-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007479143", 
          "https://doi.org/10.1007/s10064-008-0168-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2005.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007505478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2005.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007505478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02644401111141037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008317991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-004-7547-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009422489", 
          "https://doi.org/10.1007/s10706-004-7547-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2014.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016113533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2009.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017001188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2006.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017946004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022449238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t09-035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024471872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t09-065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026398054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026429092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0954-1810(94)00011-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028083880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2007.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-4105(00)00096-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029545150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(02)00023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029647282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-2312(95)00039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030126723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t07-052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031377583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t01-073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032625454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t98-017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033671353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-352x(99)00002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035845787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-1123(01)00207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0267-7261(03)00068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040832790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0267-7261(03)00068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040832790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1064119x.2010.514232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043952947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0148-9062(99)00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2006.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045470606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2006.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046972638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-1123(02)00113-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-1123(02)00113-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-004-8680-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053172455", 
          "https://doi.org/10.1007/s10706-004-8680-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2010.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053587613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057587906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(1995)9:4(275)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(2000)14:2(109)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(2004)18:1(58)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(2004)18:2(105)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2003)129:12(1071)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/gae.2013.5.6.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064860643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/gae.2014.6.1.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064860647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1991.41.1.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068210417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1526-03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071035904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsyse.1989.48672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086240825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/geotech/1988044013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092142813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511812651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665985"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "In this study, an artificial neural network (ANN) model was developed to predict the cone penetration resistance of silty sands. To achieve this, the data sets reported by Ecemis and Karaman, including the results of three high-quality field tests, namely piezocone penetration test, pore pressure dissipation tests, and direct push permeability tests performed at 20 different locations on the northern coast of the Izmir Gulf in Turkey, have been used in the development of the ANN model. The ANN model consisted of three input parameters (relative density, fines content, and horizontal coefficient of consolidation) and a single output parameter (normalized cone penetration resistance). The results obtained from the ANN model were compared with those obtained from the field tests. It is found that the ANN model is efficient in determining the cone penetration resistance of silty sands and yields cone penetration resistance values that are very close to those obtained from the field tests. Additionally, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and scaled percent error were computed to examine the performance of the ANN model developed. The performance level attained in the ANN model shows that the ANN model developed in this study can be employed for predicting cone penetration of silty sands quite efficiently.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-016-2371-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3787911", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "The use of neural networks for the prediction of cone penetration resistance of silty sands", 
    "pagination": "727-736", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2eb67a8b3db64ebfb77b3110f345bc19bb31da8237bd8966d98ebbe6212282b2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-016-2371-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009805492"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-016-2371-z", 
      "https://app.dimensions.ai/details/publication/pub.1009805492"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-016-2371-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2371-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2371-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2371-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2371-z'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-016-2371-z schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N70d658a4837f422ba504f6a2dc70e344
4 schema:citation sg:pub.10.1007/s00521-012-1302-x
5 sg:pub.10.1007/s10064-008-0168-8
6 sg:pub.10.1007/s10064-014-0606-8
7 sg:pub.10.1007/s10706-004-7547-0
8 sg:pub.10.1007/s10706-004-8680-5
9 https://doi.org/10.1016/0893-6080(89)90020-8
10 https://doi.org/10.1016/0925-2312(95)00039-9
11 https://doi.org/10.1016/0954-1810(94)00011-s
12 https://doi.org/10.1016/j.asoc.2010.10.008
13 https://doi.org/10.1016/j.cageo.2012.09.003
14 https://doi.org/10.1016/j.compgeo.2005.02.003
15 https://doi.org/10.1016/j.compgeo.2005.06.002
16 https://doi.org/10.1016/j.compgeo.2006.08.006
17 https://doi.org/10.1016/j.compgeo.2006.08.007
18 https://doi.org/10.1016/j.compgeo.2007.08.002
19 https://doi.org/10.1016/j.compgeo.2009.01.003
20 https://doi.org/10.1016/j.engappai.2003.11.006
21 https://doi.org/10.1016/j.enggeo.2008.08.005
22 https://doi.org/10.1016/j.enggeo.2014.08.012
23 https://doi.org/10.1016/j.ijrmms.2005.06.007
24 https://doi.org/10.1016/j.ijthermalsci.2007.11.001
25 https://doi.org/10.1016/j.ijthermalsci.2009.06.008
26 https://doi.org/10.1016/j.scient.2012.02.008
27 https://doi.org/10.1016/j.soildyn.2006.11.001
28 https://doi.org/10.1016/s0013-7952(02)00023-6
29 https://doi.org/10.1016/s0142-1123(01)00207-9
30 https://doi.org/10.1016/s0142-1123(02)00113-5
31 https://doi.org/10.1016/s0148-9062(99)00007-8
32 https://doi.org/10.1016/s0266-352x(99)00002-6
33 https://doi.org/10.1016/s0267-7261(03)00068-x
34 https://doi.org/10.1016/s0920-4105(00)00096-6
35 https://doi.org/10.1017/cbo9780511812651
36 https://doi.org/10.1051/geotech/1988044013
37 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)
38 https://doi.org/10.1061/(asce)0887-3801(1995)9:4(275)
39 https://doi.org/10.1061/(asce)0887-3801(2000)14:2(109)
40 https://doi.org/10.1061/(asce)0887-3801(2004)18:1(58)
41 https://doi.org/10.1061/(asce)0887-3801(2004)18:2(105)
42 https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817)
43 https://doi.org/10.1061/(asce)1090-0241(2003)129:12(1071)
44 https://doi.org/10.1080/014311697218719
45 https://doi.org/10.1080/08839514.2013.823326
46 https://doi.org/10.1080/1064119x.2010.514232
47 https://doi.org/10.1108/02644401111141037
48 https://doi.org/10.1109/icsyse.1989.48672
49 https://doi.org/10.1139/t01-073
50 https://doi.org/10.1139/t07-052
51 https://doi.org/10.1139/t09-035
52 https://doi.org/10.1139/t09-065
53 https://doi.org/10.1139/t09-094
54 https://doi.org/10.1139/t98-017
55 https://doi.org/10.12989/gae.2013.5.6.541
56 https://doi.org/10.12989/gae.2014.6.1.001
57 https://doi.org/10.1680/geot.1991.41.1.17
58 https://doi.org/10.3141/1526-03
59 schema:datePublished 2017-12
60 schema:datePublishedReg 2017-12-01
61 schema:description In this study, an artificial neural network (ANN) model was developed to predict the cone penetration resistance of silty sands. To achieve this, the data sets reported by Ecemis and Karaman, including the results of three high-quality field tests, namely piezocone penetration test, pore pressure dissipation tests, and direct push permeability tests performed at 20 different locations on the northern coast of the Izmir Gulf in Turkey, have been used in the development of the ANN model. The ANN model consisted of three input parameters (relative density, fines content, and horizontal coefficient of consolidation) and a single output parameter (normalized cone penetration resistance). The results obtained from the ANN model were compared with those obtained from the field tests. It is found that the ANN model is efficient in determining the cone penetration resistance of silty sands and yields cone penetration resistance values that are very close to those obtained from the field tests. Additionally, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and scaled percent error were computed to examine the performance of the ANN model developed. The performance level attained in the ANN model shows that the ANN model developed in this study can be employed for predicting cone penetration of silty sands quite efficiently.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N8f6adeb588864e7c90d4a633bd335a36
66 Nb47ab05d966f41be9dae50d3759fda36
67 sg:journal.1104357
68 schema:name The use of neural networks for the prediction of cone penetration resistance of silty sands
69 schema:pagination 727-736
70 schema:productId N207427ba662b4734abdaf649aa76f8f3
71 N7ec36c99be3b4a8e8170c98a3faa1378
72 N87534bc83f57408db4dad4fd227f95a1
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009805492
74 https://doi.org/10.1007/s00521-016-2371-z
75 schema:sdDatePublished 2019-04-11T12:38
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nd344bcb1548a4f63900d601a9f9887e3
78 schema:url https://link.springer.com/10.1007%2Fs00521-016-2371-z
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N207427ba662b4734abdaf649aa76f8f3 schema:name readcube_id
83 schema:value 2eb67a8b3db64ebfb77b3110f345bc19bb31da8237bd8966d98ebbe6212282b2
84 rdf:type schema:PropertyValue
85 N70d658a4837f422ba504f6a2dc70e344 rdf:first sg:person.01103335505.91
86 rdf:rest N71e77051137d47f0b36eecadc41a86ff
87 N71e77051137d47f0b36eecadc41a86ff rdf:first sg:person.013716154047.48
88 rdf:rest rdf:nil
89 N7ec36c99be3b4a8e8170c98a3faa1378 schema:name dimensions_id
90 schema:value pub.1009805492
91 rdf:type schema:PropertyValue
92 N87534bc83f57408db4dad4fd227f95a1 schema:name doi
93 schema:value 10.1007/s00521-016-2371-z
94 rdf:type schema:PropertyValue
95 N8f6adeb588864e7c90d4a633bd335a36 schema:volumeNumber 28
96 rdf:type schema:PublicationVolume
97 Nb47ab05d966f41be9dae50d3759fda36 schema:issueNumber Suppl 1
98 rdf:type schema:PublicationIssue
99 Nd344bcb1548a4f63900d601a9f9887e3 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
102 schema:name Psychology and Cognitive Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
105 schema:name Psychology
106 rdf:type schema:DefinedTerm
107 sg:grant.3787911 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-016-2371-z
108 rdf:type schema:MonetaryGrant
109 sg:journal.1104357 schema:issn 0941-0643
110 1433-3058
111 schema:name Neural Computing and Applications
112 rdf:type schema:Periodical
113 sg:person.01103335505.91 schema:affiliation https://www.grid.ac/institutes/grid.411688.2
114 schema:familyName Erzin
115 schema:givenName Yusuf
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103335505.91
117 rdf:type schema:Person
118 sg:person.013716154047.48 schema:affiliation https://www.grid.ac/institutes/grid.419609.3
119 schema:familyName Ecemis
120 schema:givenName Nurhan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716154047.48
122 rdf:type schema:Person
123 sg:pub.10.1007/s00521-012-1302-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005216651
124 https://doi.org/10.1007/s00521-012-1302-x
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10064-008-0168-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007479143
127 https://doi.org/10.1007/s10064-008-0168-8
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10064-014-0606-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006199607
130 https://doi.org/10.1007/s10064-014-0606-8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10706-004-7547-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009422489
133 https://doi.org/10.1007/s10706-004-7547-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10706-004-8680-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172455
136 https://doi.org/10.1007/s10706-004-8680-5
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0925-2312(95)00039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030126723
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0954-1810(94)00011-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1028083880
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.asoc.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053587613
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cageo.2012.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002151329
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.compgeo.2005.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379047
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.compgeo.2005.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053243162
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.compgeo.2006.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017946004
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.compgeo.2006.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045470606
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.compgeo.2007.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029183142
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.compgeo.2009.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006575553
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.engappai.2003.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002343563
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.enggeo.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026429092
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.enggeo.2014.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016113533
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ijrmms.2005.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007505478
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ijthermalsci.2007.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001117501
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ijthermalsci.2009.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017001188
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.scient.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449238
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.soildyn.2006.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046972638
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0013-7952(02)00023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029647282
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0142-1123(01)00207-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751069
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0142-1123(02)00113-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802974
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0148-9062(99)00007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532046
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0266-352x(99)00002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035845787
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0267-7261(03)00068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040832790
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0920-4105(00)00096-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029545150
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1017/cbo9780511812651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665985
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1051/geotech/1988044013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092142813
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057587906
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1061/(asce)0887-3801(1995)9:4(275) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609099
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1061/(asce)0887-3801(2000)14:2(109) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609294
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1061/(asce)0887-3801(2004)18:1(58) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609431
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1061/(asce)0887-3801(2004)18:2(105) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609434
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618328
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1061/(asce)1090-0241(2003)129:12(1071) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618624
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1080/014311697218719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002892483
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1080/08839514.2013.823326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002090744
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1080/1064119x.2010.514232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043952947
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1108/02644401111141037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008317991
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/icsyse.1989.48672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086240825
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1139/t01-073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032625454
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1139/t07-052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031377583
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1139/t09-035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024471872
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1139/t09-065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026398054
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1139/t09-094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005390617
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1139/t98-017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033671353
229 rdf:type schema:CreativeWork
230 https://doi.org/10.12989/gae.2013.5.6.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064860643
231 rdf:type schema:CreativeWork
232 https://doi.org/10.12989/gae.2014.6.1.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064860647
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1680/geot.1991.41.1.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068210417
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3141/1526-03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071035904
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.411688.2 schema:alternateName Celal Bayar University
239 schema:name Department of Civil Engineering, Faculty of Engineering, Celal Bayar University, 45140, Manisa, Turkey
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.419609.3 schema:alternateName Izmir Institute of Technology
242 schema:name Department of Civil Engineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...