Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Long Zhang, Linlin Shan, Jianhua Wang

ABSTRACT

In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance. More... »

PAGES

2795-2808

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0

DOI

http://dx.doi.org/10.1007/s00521-016-2204-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038233295


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China", 
            "School of Computer Science and Technology, Harbin Institute of Technology, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Long", 
        "id": "sg:person.013627330027.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627330027.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heilongjiang University", 
          "id": "https://www.grid.ac/institutes/grid.412067.6", 
          "name": [
            "School of Art, Heilongjiang University, 150080, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shan", 
        "givenName": "Linlin", 
        "id": "sg:person.016017651427.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017651427.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411991.5", 
          "name": [
            "College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianhua", 
        "id": "sg:person.010707541227.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707541227.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001069424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/545151.545152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003289400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04944-6_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003585062", 
          "https://doi.org/10.1007/978-3-642-04944-6_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2011.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007172264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2013.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007710829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009817669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009817669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-405163-8.00004-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010155978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(01)00084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016810151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016828309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2009.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020526640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/237984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025839273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-012-0254-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026030083", 
          "https://doi.org/10.1007/s00366-012-0254-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026754978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.07.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027186422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2007.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027366809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/721521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029829817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2004.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029883264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2004.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029883264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(03)00079-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031314789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(03)00079-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031314789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032857320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048246654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2011.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048730067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmsy.2012.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048958626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053122524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053122524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.298224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.977291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsyst.2013.2258229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061339123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsyst.2013.2258229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061339123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsyst.2013.2286539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061339229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1977.4309803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbic.2010.032124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067436748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1997.637339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093293147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sis.2007.368035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093998886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2009.5393690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094066347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aipr.2004.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094331235"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-016-2204-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion", 
    "pagination": "2795-2808", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6219502d3f355fb9bfdd14c9b4b47968f0e55182f21415a5849bd7ebc0f2587"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-016-2204-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038233295"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-016-2204-0", 
      "https://app.dimensions.ai/details/publication/pub.1038233295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-016-2204-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-016-2204-0 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N66bc169e1bee4faa88084c9119eb913b
4 schema:citation sg:pub.10.1007/978-3-642-04944-6_14
5 sg:pub.10.1007/s00366-012-0254-1
6 https://doi.org/10.1016/b978-0-12-405163-8.00004-1
7 https://doi.org/10.1016/j.asoc.2011.09.017
8 https://doi.org/10.1016/j.asoc.2012.04.030
9 https://doi.org/10.1016/j.asoc.2012.09.024
10 https://doi.org/10.1016/j.cnsns.2012.06.009
11 https://doi.org/10.1016/j.compbiolchem.2007.09.005
12 https://doi.org/10.1016/j.compstruc.2011.08.002
13 https://doi.org/10.1016/j.eswa.2011.03.028
14 https://doi.org/10.1016/j.eswa.2011.07.108
15 https://doi.org/10.1016/j.ins.2009.03.004
16 https://doi.org/10.1016/j.ipm.2004.08.006
17 https://doi.org/10.1016/j.jmsy.2012.06.004
18 https://doi.org/10.1016/j.patcog.2009.12.013
19 https://doi.org/10.1016/j.patrec.2003.08.011
20 https://doi.org/10.1016/j.swevo.2011.06.003
21 https://doi.org/10.1016/j.swevo.2013.06.001
22 https://doi.org/10.1016/s0004-3702(03)00079-1
23 https://doi.org/10.1016/s0031-3203(01)00084-x
24 https://doi.org/10.1109/72.298224
25 https://doi.org/10.1109/72.977291
26 https://doi.org/10.1109/aipr.2004.41
27 https://doi.org/10.1109/icsmc.1997.637339
28 https://doi.org/10.1109/jsyst.2013.2258229
29 https://doi.org/10.1109/jsyst.2013.2286539
30 https://doi.org/10.1109/nabic.2009.5393690
31 https://doi.org/10.1109/sis.2007.368035
32 https://doi.org/10.1109/tsmc.1977.4309803
33 https://doi.org/10.1145/545151.545152
34 https://doi.org/10.1155/2013/237984
35 https://doi.org/10.1155/2014/721521
36 https://doi.org/10.1504/ijbic.2010.032124
37 schema:datePublished 2017-09
38 schema:datePublishedReg 2017-09-01
39 schema:description In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N197f1902dbbf4b398a3a67189937b1a6
44 N1c939214e31c473a9ef697cfb90f6fb7
45 sg:journal.1104357
46 schema:name Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion
47 schema:pagination 2795-2808
48 schema:productId N093aeee79903456f8ef8d63af9069a70
49 N2d262b2204394f3baa45e9357bd0fb09
50 Nf887e52d246940c8b8e2f089a3914f29
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038233295
52 https://doi.org/10.1007/s00521-016-2204-0
53 schema:sdDatePublished 2019-04-11T12:39
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N2697cbc561cc414a87f2802cc9600c47
56 schema:url https://link.springer.com/10.1007%2Fs00521-016-2204-0
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N093aeee79903456f8ef8d63af9069a70 schema:name doi
61 schema:value 10.1007/s00521-016-2204-0
62 rdf:type schema:PropertyValue
63 N197f1902dbbf4b398a3a67189937b1a6 schema:volumeNumber 28
64 rdf:type schema:PublicationVolume
65 N1c939214e31c473a9ef697cfb90f6fb7 schema:issueNumber 9
66 rdf:type schema:PublicationIssue
67 N2697cbc561cc414a87f2802cc9600c47 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N2d262b2204394f3baa45e9357bd0fb09 schema:name dimensions_id
70 schema:value pub.1038233295
71 rdf:type schema:PropertyValue
72 N66bc169e1bee4faa88084c9119eb913b rdf:first sg:person.013627330027.10
73 rdf:rest Nea96f2d68153435f8a9db382bb13c95f
74 N7a34b5feb80041e6a332b07ae15a62bd rdf:first sg:person.010707541227.07
75 rdf:rest rdf:nil
76 Nea96f2d68153435f8a9db382bb13c95f rdf:first sg:person.016017651427.66
77 rdf:rest N7a34b5feb80041e6a332b07ae15a62bd
78 Nf887e52d246940c8b8e2f089a3914f29 schema:name readcube_id
79 schema:value b6219502d3f355fb9bfdd14c9b4b47968f0e55182f21415a5849bd7ebc0f2587
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
85 schema:name Applied Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1104357 schema:issn 0941-0643
88 1433-3058
89 schema:name Neural Computing and Applications
90 rdf:type schema:Periodical
91 sg:person.010707541227.07 schema:affiliation https://www.grid.ac/institutes/grid.411991.5
92 schema:familyName Wang
93 schema:givenName Jianhua
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707541227.07
95 rdf:type schema:Person
96 sg:person.013627330027.10 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
97 schema:familyName Zhang
98 schema:givenName Long
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627330027.10
100 rdf:type schema:Person
101 sg:person.016017651427.66 schema:affiliation https://www.grid.ac/institutes/grid.412067.6
102 schema:familyName Shan
103 schema:givenName Linlin
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017651427.66
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-642-04944-6_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003585062
107 https://doi.org/10.1007/978-3-642-04944-6_14
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00366-012-0254-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026030083
110 https://doi.org/10.1007/s00366-012-0254-1
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/b978-0-12-405163-8.00004-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010155978
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.asoc.2011.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048730067
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.asoc.2012.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026754978
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.asoc.2012.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032857320
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cnsns.2012.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053122524
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.compbiolchem.2007.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027366809
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.compstruc.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007172264
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.eswa.2011.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016828309
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.eswa.2011.07.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027186422
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ins.2009.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020526640
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ipm.2004.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029883264
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jmsy.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048958626
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.patcog.2009.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048246654
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.patrec.2003.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009817669
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.swevo.2011.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001069424
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.swevo.2013.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007710829
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0004-3702(03)00079-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031314789
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0031-3203(01)00084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016810151
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/72.298224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218469
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/72.977291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219683
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/aipr.2004.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094331235
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icsmc.1997.637339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093293147
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/jsyst.2013.2258229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061339123
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/jsyst.2013.2286539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061339229
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/nabic.2009.5393690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094066347
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/sis.2007.368035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093998886
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tsmc.1977.4309803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793082
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/545151.545152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003289400
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1155/2013/237984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025839273
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1155/2014/721521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029829817
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1504/ijbic.2010.032124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067436748
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
175 schema:name College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China
176 School of Computer Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.411991.5 schema:alternateName Harbin Normal University
179 schema:name College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.412067.6 schema:alternateName Heilongjiang University
182 schema:name School of Art, Heilongjiang University, 150080, Harbin, China
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...