Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Long Zhang, Linlin Shan, Jianhua Wang

ABSTRACT

In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance. More... »

PAGES

2795-2808

References to SciGraph publications

  • 2013-04. Multiobjective firefly algorithm for continuous optimization in ENGINEERING WITH COMPUTERS
  • 2009. Firefly Algorithms for Multimodal Optimization in STOCHASTIC ALGORITHMS: FOUNDATIONS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0

    DOI

    http://dx.doi.org/10.1007/s00521-016-2204-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038233295


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China", 
                "School of Computer Science and Technology, Harbin Institute of Technology, 150001, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Long", 
            "id": "sg:person.013627330027.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627330027.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Heilongjiang University", 
              "id": "https://www.grid.ac/institutes/grid.412067.6", 
              "name": [
                "School of Art, Heilongjiang University, 150080, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shan", 
            "givenName": "Linlin", 
            "id": "sg:person.016017651427.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017651427.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411991.5", 
              "name": [
                "College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jianhua", 
            "id": "sg:person.010707541227.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707541227.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.swevo.2011.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001069424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/545151.545152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003289400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04944-6_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003585062", 
              "https://doi.org/10.1007/978-3-642-04944-6_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2011.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007172264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.swevo.2013.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007710829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2003.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009817669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2003.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009817669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-405163-8.00004-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010155978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(01)00084-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016810151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2011.03.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016828309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2009.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020526640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/237984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025839273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-012-0254-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026030083", 
              "https://doi.org/10.1007/s00366-012-0254-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2012.04.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026754978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2011.07.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027186422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiolchem.2007.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027366809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/721521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029829817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ipm.2004.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029883264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ipm.2004.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029883264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0004-3702(03)00079-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031314789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0004-3702(03)00079-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031314789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2012.09.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032857320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2009.12.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048246654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2011.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048730067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmsy.2012.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048958626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cnsns.2012.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053122524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cnsns.2012.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053122524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.298224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.977291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsyst.2013.2258229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061339123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsyst.2013.2258229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061339123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsyst.2013.2286539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061339229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1977.4309803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061793082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijbic.2010.032124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067436748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icsmc.1997.637339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093293147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sis.2007.368035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093998886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nabic.2009.5393690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094066347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/aipr.2004.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094331235"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09", 
        "datePublishedReg": "2017-09-01", 
        "description": "In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00521-016-2204-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion", 
        "pagination": "2795-2808", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b6219502d3f355fb9bfdd14c9b4b47968f0e55182f21415a5849bd7ebc0f2587"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-016-2204-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038233295"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-016-2204-0", 
          "https://app.dimensions.ai/details/publication/pub.1038233295"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00521-016-2204-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-016-2204-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-016-2204-0 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N2a554205a13248cbbd8bc1ae9f705424
    4 schema:citation sg:pub.10.1007/978-3-642-04944-6_14
    5 sg:pub.10.1007/s00366-012-0254-1
    6 https://doi.org/10.1016/b978-0-12-405163-8.00004-1
    7 https://doi.org/10.1016/j.asoc.2011.09.017
    8 https://doi.org/10.1016/j.asoc.2012.04.030
    9 https://doi.org/10.1016/j.asoc.2012.09.024
    10 https://doi.org/10.1016/j.cnsns.2012.06.009
    11 https://doi.org/10.1016/j.compbiolchem.2007.09.005
    12 https://doi.org/10.1016/j.compstruc.2011.08.002
    13 https://doi.org/10.1016/j.eswa.2011.03.028
    14 https://doi.org/10.1016/j.eswa.2011.07.108
    15 https://doi.org/10.1016/j.ins.2009.03.004
    16 https://doi.org/10.1016/j.ipm.2004.08.006
    17 https://doi.org/10.1016/j.jmsy.2012.06.004
    18 https://doi.org/10.1016/j.patcog.2009.12.013
    19 https://doi.org/10.1016/j.patrec.2003.08.011
    20 https://doi.org/10.1016/j.swevo.2011.06.003
    21 https://doi.org/10.1016/j.swevo.2013.06.001
    22 https://doi.org/10.1016/s0004-3702(03)00079-1
    23 https://doi.org/10.1016/s0031-3203(01)00084-x
    24 https://doi.org/10.1109/72.298224
    25 https://doi.org/10.1109/72.977291
    26 https://doi.org/10.1109/aipr.2004.41
    27 https://doi.org/10.1109/icsmc.1997.637339
    28 https://doi.org/10.1109/jsyst.2013.2258229
    29 https://doi.org/10.1109/jsyst.2013.2286539
    30 https://doi.org/10.1109/nabic.2009.5393690
    31 https://doi.org/10.1109/sis.2007.368035
    32 https://doi.org/10.1109/tsmc.1977.4309803
    33 https://doi.org/10.1145/545151.545152
    34 https://doi.org/10.1155/2013/237984
    35 https://doi.org/10.1155/2014/721521
    36 https://doi.org/10.1504/ijbic.2010.032124
    37 schema:datePublished 2017-09
    38 schema:datePublishedReg 2017-09-01
    39 schema:description In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf Nbbccd2b96de74ad6b5f63c690e77539c
    44 Nfacb134dfcf34136ba790e6ec5e8b40d
    45 sg:journal.1104357
    46 schema:name Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion
    47 schema:pagination 2795-2808
    48 schema:productId N1eca04599166478fbc27fe064e1e4bb9
    49 N9fc5ff9b4cc0457d8cfe3c90d754c0ad
    50 Na400412846864a75b1e5fc3f0ff5f818
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038233295
    52 https://doi.org/10.1007/s00521-016-2204-0
    53 schema:sdDatePublished 2019-04-11T12:39
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N83f2e1b308834ea88f7017287ce847a6
    56 schema:url https://link.springer.com/10.1007%2Fs00521-016-2204-0
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N1eca04599166478fbc27fe064e1e4bb9 schema:name dimensions_id
    61 schema:value pub.1038233295
    62 rdf:type schema:PropertyValue
    63 N2a554205a13248cbbd8bc1ae9f705424 rdf:first sg:person.013627330027.10
    64 rdf:rest Nfa8d2fdb03864acab73bf0289411f130
    65 N83f2e1b308834ea88f7017287ce847a6 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N917d694473d9431a96e5c3face0e4934 rdf:first sg:person.010707541227.07
    68 rdf:rest rdf:nil
    69 N9fc5ff9b4cc0457d8cfe3c90d754c0ad schema:name readcube_id
    70 schema:value b6219502d3f355fb9bfdd14c9b4b47968f0e55182f21415a5849bd7ebc0f2587
    71 rdf:type schema:PropertyValue
    72 Na400412846864a75b1e5fc3f0ff5f818 schema:name doi
    73 schema:value 10.1007/s00521-016-2204-0
    74 rdf:type schema:PropertyValue
    75 Nbbccd2b96de74ad6b5f63c690e77539c schema:issueNumber 9
    76 rdf:type schema:PublicationIssue
    77 Nfa8d2fdb03864acab73bf0289411f130 rdf:first sg:person.016017651427.66
    78 rdf:rest N917d694473d9431a96e5c3face0e4934
    79 Nfacb134dfcf34136ba790e6ec5e8b40d schema:volumeNumber 28
    80 rdf:type schema:PublicationVolume
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Applied Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1104357 schema:issn 0941-0643
    88 1433-3058
    89 schema:name Neural Computing and Applications
    90 rdf:type schema:Periodical
    91 sg:person.010707541227.07 schema:affiliation https://www.grid.ac/institutes/grid.411991.5
    92 schema:familyName Wang
    93 schema:givenName Jianhua
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707541227.07
    95 rdf:type schema:Person
    96 sg:person.013627330027.10 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    97 schema:familyName Zhang
    98 schema:givenName Long
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627330027.10
    100 rdf:type schema:Person
    101 sg:person.016017651427.66 schema:affiliation https://www.grid.ac/institutes/grid.412067.6
    102 schema:familyName Shan
    103 schema:givenName Linlin
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017651427.66
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-3-642-04944-6_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003585062
    107 https://doi.org/10.1007/978-3-642-04944-6_14
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00366-012-0254-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026030083
    110 https://doi.org/10.1007/s00366-012-0254-1
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/b978-0-12-405163-8.00004-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010155978
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.asoc.2011.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048730067
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.asoc.2012.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026754978
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.asoc.2012.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032857320
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.cnsns.2012.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053122524
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.compbiolchem.2007.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027366809
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.compstruc.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007172264
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.eswa.2011.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016828309
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.eswa.2011.07.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027186422
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.ins.2009.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020526640
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.ipm.2004.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029883264
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.jmsy.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048958626
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.patcog.2009.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048246654
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.patrec.2003.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009817669
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.swevo.2011.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001069424
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.swevo.2013.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007710829
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0004-3702(03)00079-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031314789
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s0031-3203(01)00084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016810151
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/72.298224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218469
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/72.977291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219683
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/aipr.2004.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094331235
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/icsmc.1997.637339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093293147
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/jsyst.2013.2258229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061339123
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/jsyst.2013.2286539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061339229
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/nabic.2009.5393690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094066347
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/sis.2007.368035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093998886
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/tsmc.1977.4309803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793082
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1145/545151.545152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003289400
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1155/2013/237984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025839273
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1155/2014/721521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029829817
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1504/ijbic.2010.032124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067436748
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    175 schema:name College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China
    176 School of Computer Science and Technology, Harbin Institute of Technology, 150001, Harbin, China
    177 rdf:type schema:Organization
    178 https://www.grid.ac/institutes/grid.411991.5 schema:alternateName Harbin Normal University
    179 schema:name College of Computer Science and Information Engineering, Harbin Normal University, 150025, Harbin, China
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.412067.6 schema:alternateName Heilongjiang University
    182 schema:name School of Art, Heilongjiang University, 150080, Harbin, China
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...