Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Mehrzad Mohabbi Yadollahi, Ahmet Benli, Ramazan Demirboga

ABSTRACT

This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model. More... »

PAGES

1453-1461

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6

DOI

http://dx.doi.org/10.1007/s00521-015-2159-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038564613


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bing\u00f6l University", 
          "id": "https://www.grid.ac/institutes/grid.448543.a", 
          "name": [
            "Department of Civil Engineering, Bingol University, Bingol, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadollahi", 
        "givenName": "Mehrzad Mohabbi", 
        "id": "sg:person.016347372473.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347372473.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bing\u00f6l University", 
          "id": "https://www.grid.ac/institutes/grid.448543.a", 
          "name": [
            "Department of Civil Engineering, Bingol University, Bingol, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benli", 
        "givenName": "Ahmet", 
        "id": "sg:person.011615671606.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615671606.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdulaziz University", 
          "id": "https://www.grid.ac/institutes/grid.412125.1", 
          "name": [
            "Department of Civil Engineering, King Abdulaziz University, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demirboga", 
        "givenName": "Ramazan", 
        "id": "sg:person.014623201005.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623201005.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1179/1743289815y.0000000020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002490183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2015.01.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002873813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002974867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3923/jas.2009.155.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003004237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2011.11.2108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010160465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-013-0361-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092732", 
          "https://doi.org/10.1007/s11269-013-0361-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconcomp.2009.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011095878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09349840903122042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011260549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2015.07.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012192890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultras.2008.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012648333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2008.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014794795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.01.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019975299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-007-2201-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021592191", 
          "https://doi.org/10.1007/s10853-007-2201-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2013.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022821037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2012.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025175540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/secm-2013-0100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027242765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2012.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028545345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsbe.2014.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032117814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2013.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032488159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2013.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039549133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2011.04.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040682159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0892-6875(97)00046-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040924769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01912193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046336594", 
          "https://doi.org/10.1007/bf01912193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01912193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046336594", 
          "https://doi.org/10.1007/bf01912193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2013.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047200304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2009.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048566999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-7516(99)00074-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049537056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2011.07.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049674328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aqpro.2015.02.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051306401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2012.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051388798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2010.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052917878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.256541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121711"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-015-2159-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites", 
    "pagination": "1453-1461", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b7b49c85af80af548f4dbbe5b356f9959dfbf5400437561a6213a81412d78b0e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-015-2159-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038564613"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-015-2159-6", 
      "https://app.dimensions.ai/details/publication/pub.1038564613"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70068_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00521-015-2159-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-015-2159-6 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N94f5bdc31f3448bcb91a54afb5de9f04
4 schema:citation sg:pub.10.1007/bf01912193
5 sg:pub.10.1007/s10853-007-2201-x
6 sg:pub.10.1007/s11269-013-0361-9
7 https://doi.org/10.1016/j.advengsoft.2013.09.004
8 https://doi.org/10.1016/j.aqpro.2015.02.147
9 https://doi.org/10.1016/j.cemconcomp.2009.07.006
10 https://doi.org/10.1016/j.ceramint.2012.02.026
11 https://doi.org/10.1016/j.commatsci.2011.07.053
12 https://doi.org/10.1016/j.compfluid.2013.12.004
13 https://doi.org/10.1016/j.compositesb.2012.01.012
14 https://doi.org/10.1016/j.conbuildmat.2009.10.037
15 https://doi.org/10.1016/j.conbuildmat.2010.12.031
16 https://doi.org/10.1016/j.conbuildmat.2011.04.044
17 https://doi.org/10.1016/j.conbuildmat.2012.06.002
18 https://doi.org/10.1016/j.conbuildmat.2013.01.016
19 https://doi.org/10.1016/j.conbuildmat.2013.02.033
20 https://doi.org/10.1016/j.conbuildmat.2015.07.052
21 https://doi.org/10.1016/j.ijrmms.2008.09.002
22 https://doi.org/10.1016/j.ijsbe.2014.12.002
23 https://doi.org/10.1016/j.matdes.2012.07.012
24 https://doi.org/10.1016/j.matdes.2014.01.064
25 https://doi.org/10.1016/j.powtec.2015.01.038
26 https://doi.org/10.1016/j.proeng.2011.11.2108
27 https://doi.org/10.1016/j.ultras.2008.05.001
28 https://doi.org/10.1016/s0301-7516(99)00074-5
29 https://doi.org/10.1016/s0892-6875(97)00046-0
30 https://doi.org/10.1080/09349840903122042
31 https://doi.org/10.1109/21.256541
32 https://doi.org/10.1179/1743289815y.0000000020
33 https://doi.org/10.1515/secm-2013-0100
34 https://doi.org/10.3923/jas.2009.155.160
35 schema:datePublished 2017-06
36 schema:datePublishedReg 2017-06-01
37 schema:description This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N3b524337b5bf40bdbafb1a308cf6f139
42 Na610be7c2d6e4dbcac4103dfd58b4579
43 sg:journal.1104357
44 schema:name Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites
45 schema:pagination 1453-1461
46 schema:productId N197081d2a6734b7c8d0d0e767ddd0945
47 Nc9195dbf8cf747b98cfcbb9f6a686d3c
48 Nd45f38d32f5a4ecabeebc756cf9a1ffe
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038564613
50 https://doi.org/10.1007/s00521-015-2159-6
51 schema:sdDatePublished 2019-04-11T12:44
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Ncbb7b7557072405099beb781fa206d6f
54 schema:url https://link.springer.com/10.1007%2Fs00521-015-2159-6
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N197081d2a6734b7c8d0d0e767ddd0945 schema:name readcube_id
59 schema:value b7b49c85af80af548f4dbbe5b356f9959dfbf5400437561a6213a81412d78b0e
60 rdf:type schema:PropertyValue
61 N3aabc2ab20ac4caf9053f75642d240ed rdf:first sg:person.014623201005.54
62 rdf:rest rdf:nil
63 N3b524337b5bf40bdbafb1a308cf6f139 schema:issueNumber 6
64 rdf:type schema:PublicationIssue
65 N94f5bdc31f3448bcb91a54afb5de9f04 rdf:first sg:person.016347372473.47
66 rdf:rest Ne2094a2e353e400087ff3e2a3c546a3d
67 Na610be7c2d6e4dbcac4103dfd58b4579 schema:volumeNumber 28
68 rdf:type schema:PublicationVolume
69 Nc9195dbf8cf747b98cfcbb9f6a686d3c schema:name doi
70 schema:value 10.1007/s00521-015-2159-6
71 rdf:type schema:PropertyValue
72 Ncbb7b7557072405099beb781fa206d6f schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nd45f38d32f5a4ecabeebc756cf9a1ffe schema:name dimensions_id
75 schema:value pub.1038564613
76 rdf:type schema:PropertyValue
77 Ne2094a2e353e400087ff3e2a3c546a3d rdf:first sg:person.011615671606.19
78 rdf:rest N3aabc2ab20ac4caf9053f75642d240ed
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
83 schema:name Civil Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1104357 schema:issn 0941-0643
86 1433-3058
87 schema:name Neural Computing and Applications
88 rdf:type schema:Periodical
89 sg:person.011615671606.19 schema:affiliation https://www.grid.ac/institutes/grid.448543.a
90 schema:familyName Benli
91 schema:givenName Ahmet
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615671606.19
93 rdf:type schema:Person
94 sg:person.014623201005.54 schema:affiliation https://www.grid.ac/institutes/grid.412125.1
95 schema:familyName Demirboga
96 schema:givenName Ramazan
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623201005.54
98 rdf:type schema:Person
99 sg:person.016347372473.47 schema:affiliation https://www.grid.ac/institutes/grid.448543.a
100 schema:familyName Yadollahi
101 schema:givenName Mehrzad Mohabbi
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347372473.47
103 rdf:type schema:Person
104 sg:pub.10.1007/bf01912193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046336594
105 https://doi.org/10.1007/bf01912193
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10853-007-2201-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021592191
108 https://doi.org/10.1007/s10853-007-2201-x
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11269-013-0361-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011092732
111 https://doi.org/10.1007/s11269-013-0361-9
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.advengsoft.2013.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047200304
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.aqpro.2015.02.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051306401
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.cemconcomp.2009.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095878
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ceramint.2012.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051388798
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.commatsci.2011.07.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049674328
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.compfluid.2013.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032488159
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.compositesb.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025175540
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.conbuildmat.2009.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048566999
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.conbuildmat.2010.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052917878
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.conbuildmat.2011.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040682159
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.conbuildmat.2012.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028545345
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.conbuildmat.2013.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022821037
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.conbuildmat.2013.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039549133
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.conbuildmat.2015.07.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012192890
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijrmms.2008.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014794795
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijsbe.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032117814
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.matdes.2012.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002974867
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.matdes.2014.01.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019975299
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.powtec.2015.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002873813
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.proeng.2011.11.2108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010160465
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ultras.2008.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012648333
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0301-7516(99)00074-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049537056
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0892-6875(97)00046-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040924769
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/09349840903122042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011260549
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/21.256541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121711
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1179/1743289815y.0000000020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490183
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1515/secm-2013-0100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027242765
166 rdf:type schema:CreativeWork
167 https://doi.org/10.3923/jas.2009.155.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003004237
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.412125.1 schema:alternateName King Abdulaziz University
170 schema:name Department of Civil Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.448543.a schema:alternateName Bingöl University
173 schema:name Department of Civil Engineering, Bingol University, Bingol, Turkey
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...