Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Mehrzad Mohabbi Yadollahi, Ahmet Benli, Ramazan Demirboga

ABSTRACT

This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model. More... »

PAGES

1453-1461

References to SciGraph publications

  • 1991-08. Geopolymers in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2013-07. Improving Rainfall Forecasting Efficiency Using Modified Adaptive Neuro-Fuzzy Inference System (MANFIS) in WATER RESOURCES MANAGEMENT
  • 2008-02. Geopolymerization reaction to consolidate incoherent pozzolanic soil in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6

    DOI

    http://dx.doi.org/10.1007/s00521-015-2159-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038564613


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Bing\u00f6l University", 
              "id": "https://www.grid.ac/institutes/grid.448543.a", 
              "name": [
                "Department of Civil Engineering, Bingol University, Bingol, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yadollahi", 
            "givenName": "Mehrzad Mohabbi", 
            "id": "sg:person.016347372473.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347372473.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bing\u00f6l University", 
              "id": "https://www.grid.ac/institutes/grid.448543.a", 
              "name": [
                "Department of Civil Engineering, Bingol University, Bingol, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benli", 
            "givenName": "Ahmet", 
            "id": "sg:person.011615671606.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615671606.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King Abdulaziz University", 
              "id": "https://www.grid.ac/institutes/grid.412125.1", 
              "name": [
                "Department of Civil Engineering, King Abdulaziz University, Jeddah, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Demirboga", 
            "givenName": "Ramazan", 
            "id": "sg:person.014623201005.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623201005.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1179/1743289815y.0000000020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002490183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.powtec.2015.01.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002873813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2012.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002974867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3923/jas.2009.155.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003004237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proeng.2011.11.2108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010160465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-013-0361-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011092732", 
              "https://doi.org/10.1007/s11269-013-0361-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cemconcomp.2009.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011095878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09349840903122042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011260549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2015.07.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012192890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ultras.2008.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012648333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2008.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014794795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2014.01.064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019975299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-007-2201-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021592191", 
              "https://doi.org/10.1007/s10853-007-2201-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2013.01.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022821037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compositesb.2012.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025175540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/secm-2013-0100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027242765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2012.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028545345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijsbe.2014.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032117814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compfluid.2013.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032488159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2013.02.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039549133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2011.04.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040682159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0892-6875(97)00046-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040924769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01912193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046336594", 
              "https://doi.org/10.1007/bf01912193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01912193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046336594", 
              "https://doi.org/10.1007/bf01912193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advengsoft.2013.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047200304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2009.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048566999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0301-7516(99)00074-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049537056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2011.07.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049674328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aqpro.2015.02.147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051306401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ceramint.2012.02.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051388798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2010.12.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052917878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.256541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061121711"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00521-015-2159-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites", 
        "pagination": "1453-1461", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b7b49c85af80af548f4dbbe5b356f9959dfbf5400437561a6213a81412d78b0e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-015-2159-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038564613"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-015-2159-6", 
          "https://app.dimensions.ai/details/publication/pub.1038564613"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70068_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00521-015-2159-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-2159-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-015-2159-6 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author Nc04f4a7a084c47ec97ac5e60d96341d2
    4 schema:citation sg:pub.10.1007/bf01912193
    5 sg:pub.10.1007/s10853-007-2201-x
    6 sg:pub.10.1007/s11269-013-0361-9
    7 https://doi.org/10.1016/j.advengsoft.2013.09.004
    8 https://doi.org/10.1016/j.aqpro.2015.02.147
    9 https://doi.org/10.1016/j.cemconcomp.2009.07.006
    10 https://doi.org/10.1016/j.ceramint.2012.02.026
    11 https://doi.org/10.1016/j.commatsci.2011.07.053
    12 https://doi.org/10.1016/j.compfluid.2013.12.004
    13 https://doi.org/10.1016/j.compositesb.2012.01.012
    14 https://doi.org/10.1016/j.conbuildmat.2009.10.037
    15 https://doi.org/10.1016/j.conbuildmat.2010.12.031
    16 https://doi.org/10.1016/j.conbuildmat.2011.04.044
    17 https://doi.org/10.1016/j.conbuildmat.2012.06.002
    18 https://doi.org/10.1016/j.conbuildmat.2013.01.016
    19 https://doi.org/10.1016/j.conbuildmat.2013.02.033
    20 https://doi.org/10.1016/j.conbuildmat.2015.07.052
    21 https://doi.org/10.1016/j.ijrmms.2008.09.002
    22 https://doi.org/10.1016/j.ijsbe.2014.12.002
    23 https://doi.org/10.1016/j.matdes.2012.07.012
    24 https://doi.org/10.1016/j.matdes.2014.01.064
    25 https://doi.org/10.1016/j.powtec.2015.01.038
    26 https://doi.org/10.1016/j.proeng.2011.11.2108
    27 https://doi.org/10.1016/j.ultras.2008.05.001
    28 https://doi.org/10.1016/s0301-7516(99)00074-5
    29 https://doi.org/10.1016/s0892-6875(97)00046-0
    30 https://doi.org/10.1080/09349840903122042
    31 https://doi.org/10.1109/21.256541
    32 https://doi.org/10.1179/1743289815y.0000000020
    33 https://doi.org/10.1515/secm-2013-0100
    34 https://doi.org/10.3923/jas.2009.155.160
    35 schema:datePublished 2017-06
    36 schema:datePublishedReg 2017-06-01
    37 schema:description This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N279fb04e3abb462794a6a6f793ca8f17
    42 N3eef6ffc1e154d48922e29c15e37aff0
    43 sg:journal.1104357
    44 schema:name Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites
    45 schema:pagination 1453-1461
    46 schema:productId N22f9c80510d9470fa137a3a22b5345ea
    47 N3dfef1a0b233422d8f597d5fa93fc811
    48 N829b715ca3b448f8a0f85945f1a2fdce
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038564613
    50 https://doi.org/10.1007/s00521-015-2159-6
    51 schema:sdDatePublished 2019-04-11T12:44
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Nee061e5ff6b547c2a1e0de038733951c
    54 schema:url https://link.springer.com/10.1007%2Fs00521-015-2159-6
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0d1d15f43c804c5babb2e681ea5f4cd4 rdf:first sg:person.011615671606.19
    59 rdf:rest N18742ff18ab946739485a8cfa40ae55b
    60 N18742ff18ab946739485a8cfa40ae55b rdf:first sg:person.014623201005.54
    61 rdf:rest rdf:nil
    62 N22f9c80510d9470fa137a3a22b5345ea schema:name doi
    63 schema:value 10.1007/s00521-015-2159-6
    64 rdf:type schema:PropertyValue
    65 N279fb04e3abb462794a6a6f793ca8f17 schema:volumeNumber 28
    66 rdf:type schema:PublicationVolume
    67 N3dfef1a0b233422d8f597d5fa93fc811 schema:name dimensions_id
    68 schema:value pub.1038564613
    69 rdf:type schema:PropertyValue
    70 N3eef6ffc1e154d48922e29c15e37aff0 schema:issueNumber 6
    71 rdf:type schema:PublicationIssue
    72 N829b715ca3b448f8a0f85945f1a2fdce schema:name readcube_id
    73 schema:value b7b49c85af80af548f4dbbe5b356f9959dfbf5400437561a6213a81412d78b0e
    74 rdf:type schema:PropertyValue
    75 Nc04f4a7a084c47ec97ac5e60d96341d2 rdf:first sg:person.016347372473.47
    76 rdf:rest N0d1d15f43c804c5babb2e681ea5f4cd4
    77 Nee061e5ff6b547c2a1e0de038733951c schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Engineering
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Civil Engineering
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1104357 schema:issn 0941-0643
    86 1433-3058
    87 schema:name Neural Computing and Applications
    88 rdf:type schema:Periodical
    89 sg:person.011615671606.19 schema:affiliation https://www.grid.ac/institutes/grid.448543.a
    90 schema:familyName Benli
    91 schema:givenName Ahmet
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615671606.19
    93 rdf:type schema:Person
    94 sg:person.014623201005.54 schema:affiliation https://www.grid.ac/institutes/grid.412125.1
    95 schema:familyName Demirboga
    96 schema:givenName Ramazan
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623201005.54
    98 rdf:type schema:Person
    99 sg:person.016347372473.47 schema:affiliation https://www.grid.ac/institutes/grid.448543.a
    100 schema:familyName Yadollahi
    101 schema:givenName Mehrzad Mohabbi
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347372473.47
    103 rdf:type schema:Person
    104 sg:pub.10.1007/bf01912193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046336594
    105 https://doi.org/10.1007/bf01912193
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s10853-007-2201-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021592191
    108 https://doi.org/10.1007/s10853-007-2201-x
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s11269-013-0361-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011092732
    111 https://doi.org/10.1007/s11269-013-0361-9
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.advengsoft.2013.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047200304
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.aqpro.2015.02.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051306401
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.cemconcomp.2009.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095878
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.ceramint.2012.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051388798
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.commatsci.2011.07.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049674328
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.compfluid.2013.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032488159
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.compositesb.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025175540
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.conbuildmat.2009.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048566999
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.conbuildmat.2010.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052917878
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.conbuildmat.2011.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040682159
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.conbuildmat.2012.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028545345
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.conbuildmat.2013.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022821037
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.conbuildmat.2013.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039549133
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.conbuildmat.2015.07.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012192890
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.ijrmms.2008.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014794795
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.ijsbe.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032117814
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.matdes.2012.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002974867
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.matdes.2014.01.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019975299
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.powtec.2015.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002873813
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.proeng.2011.11.2108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010160465
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.ultras.2008.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012648333
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0301-7516(99)00074-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049537056
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0892-6875(97)00046-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040924769
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1080/09349840903122042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011260549
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/21.256541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121711
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1179/1743289815y.0000000020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490183
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1515/secm-2013-0100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027242765
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.3923/jas.2009.155.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003004237
    168 rdf:type schema:CreativeWork
    169 https://www.grid.ac/institutes/grid.412125.1 schema:alternateName King Abdulaziz University
    170 schema:name Department of Civil Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
    171 rdf:type schema:Organization
    172 https://www.grid.ac/institutes/grid.448543.a schema:alternateName Bingöl University
    173 schema:name Department of Civil Engineering, Bingol University, Bingol, Turkey
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...