DEDF: lightweight WSN distance estimation using RSSI data distribution-based fingerprinting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Qinghua Luo, Xiaozhen Yan, Junbao Li, Yu Peng, Yumei Tang, Jiaqi Wang, Dan Wang

ABSTRACT

When estimating the distance for wireless sensor networks (WSNs), we always suppose that a fixed curve model exists between the received signal strength indicator (RSSI) and communication distance. But there exist some negative factors in practice, which makes this assumption to contradict with the situation in real communication environment. It results in large distance estimation error with low efficiency. Thus, a lightweight WSN communication distance estimation method is presented, which is called distance estimation using distribution-based fingerprinting. First, we considered the uncertainty in RSSI values, and got the fingerprinting relationship in terms of RSSI data distribution, which is gained through a statistical calculation. Then, a data matching algorithm is implemented to estimate the communication distance. Finally, RSSI values in different conditions are utilized to validate this method. Experimental results demonstrated that the new method can obtain better results with high efficiency than other related methods, and can be applied in WSN localization system. More... »

PAGES

1567-1575

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-015-1956-2

DOI

http://dx.doi.org/10.1007/s00521-015-1956-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039996047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Guilin University of Electronic Technology", 
          "id": "https://www.grid.ac/institutes/grid.440723.6", 
          "name": [
            "School of Information and Electrical Engineering, Harbin Institute of Technology at WeiHai, Weihai, China", 
            "Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Guilin University of Electronic Technology), State Key Laboratory of Geo-information Engineering, State Key Laboratory of Satellite Navigation Engineering technology, Guilin, Xi\u2019an, Shijiazhuang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Qinghua", 
        "id": "sg:person.01012222774.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012222774.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guilin University of Electronic Technology", 
          "id": "https://www.grid.ac/institutes/grid.440723.6", 
          "name": [
            "School of Information and Electrical Engineering, Harbin Institute of Technology at WeiHai, Weihai, China", 
            "Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Guilin University of Electronic Technology), State Key Laboratory of Geo-information Engineering, State Key Laboratory of Satellite Navigation Engineering technology, Guilin, Xi\u2019an, Shijiazhuang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xiaozhen", 
        "id": "sg:person.015750561615.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750561615.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Junbao", 
        "id": "sg:person.011200627256.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011200627256.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Yu", 
        "id": "sg:person.013371150656.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371150656.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Information and Electrical Engineering, Harbin Institute of Technology at WeiHai, Weihai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Yumei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Information and Electrical Engineering, Harbin Institute of Technology at WeiHai, Weihai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jiaqi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "General Electric Company (China), Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Dan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/s140406584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018938140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1298091.1298094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021993656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2014.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033209796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s130303951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036572005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1614320.1614357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051591120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2013.1729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056754357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2011.2173190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061321979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2013.2255591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061322581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2013.2258905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061322619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2013.2278864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061322861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2014.2320939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061350643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2009.2022073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061623853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.2014.2347691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061639999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2010.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061690446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2014.2314064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1004.2012.01190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071316914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icon.2013.6781987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093495776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2000.832252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094379045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icosst.2012.6472830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094410452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/i2mtc.2012.6229338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094917457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipsn.2005.1440903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095024709"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "When estimating the distance for wireless sensor networks (WSNs), we always suppose that a fixed curve model exists between the received signal strength indicator (RSSI) and communication distance. But there exist some negative factors in practice, which makes this assumption to contradict with the situation in real communication environment. It results in large distance estimation error with low efficiency. Thus, a lightweight WSN communication distance estimation method is presented, which is called distance estimation using distribution-based fingerprinting. First, we considered the uncertainty in RSSI values, and got the fingerprinting relationship in terms of RSSI data distribution, which is gained through a statistical calculation. Then, a data matching algorithm is implemented to estimate the communication distance. Finally, RSSI values in different conditions are utilized to validate this method. Experimental results demonstrated that the new method can obtain better results with high efficiency than other related methods, and can be applied in WSN localization system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-015-1956-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6994059", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "DEDF: lightweight WSN distance estimation using RSSI data distribution-based fingerprinting", 
    "pagination": "1567-1575", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be866fb3613db58a910a6d8ccd9d69c82849b20f534cad6b8bd510665158d61a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-015-1956-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039996047"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-015-1956-2", 
      "https://app.dimensions.ai/details/publication/pub.1039996047"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-015-1956-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1956-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1956-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1956-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1956-2'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-015-1956-2 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nfdc7521bf98d4865816a74fb0f082d97
4 schema:citation https://doi.org/10.1016/j.measurement.2014.05.040
5 https://doi.org/10.1049/el.2013.1729
6 https://doi.org/10.1109/i2mtc.2012.6229338
7 https://doi.org/10.1109/icon.2013.6781987
8 https://doi.org/10.1109/icosst.2012.6472830
9 https://doi.org/10.1109/infcom.2000.832252
10 https://doi.org/10.1109/ipsn.2005.1440903
11 https://doi.org/10.1109/jsen.2011.2173190
12 https://doi.org/10.1109/jsen.2013.2255591
13 https://doi.org/10.1109/jsen.2013.2258905
14 https://doi.org/10.1109/jsen.2013.2278864
15 https://doi.org/10.1109/lcomm.2014.2320939
16 https://doi.org/10.1109/tie.2009.2022073
17 https://doi.org/10.1109/tim.2014.2347691
18 https://doi.org/10.1109/tmc.2010.122
19 https://doi.org/10.1109/tsp.2014.2314064
20 https://doi.org/10.1145/1298091.1298094
21 https://doi.org/10.1145/1614320.1614357
22 https://doi.org/10.3390/s130303951
23 https://doi.org/10.3390/s140406584
24 https://doi.org/10.3724/sp.j.1004.2012.01190
25 schema:datePublished 2016-08
26 schema:datePublishedReg 2016-08-01
27 schema:description When estimating the distance for wireless sensor networks (WSNs), we always suppose that a fixed curve model exists between the received signal strength indicator (RSSI) and communication distance. But there exist some negative factors in practice, which makes this assumption to contradict with the situation in real communication environment. It results in large distance estimation error with low efficiency. Thus, a lightweight WSN communication distance estimation method is presented, which is called distance estimation using distribution-based fingerprinting. First, we considered the uncertainty in RSSI values, and got the fingerprinting relationship in terms of RSSI data distribution, which is gained through a statistical calculation. Then, a data matching algorithm is implemented to estimate the communication distance. Finally, RSSI values in different conditions are utilized to validate this method. Experimental results demonstrated that the new method can obtain better results with high efficiency than other related methods, and can be applied in WSN localization system.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N089626cf27e7415abd234e406cc90eed
32 N8e3711a10cca46419fbb7060fd2d2f38
33 sg:journal.1104357
34 schema:name DEDF: lightweight WSN distance estimation using RSSI data distribution-based fingerprinting
35 schema:pagination 1567-1575
36 schema:productId Na7b3b5fd326f427c8263b2e280c75c24
37 Nd16b2559feef4b0fb9cbc11a9b663ea9
38 Nfb7d1f9cd9fa420ca4f0b16aa9e1b432
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039996047
40 https://doi.org/10.1007/s00521-015-1956-2
41 schema:sdDatePublished 2019-04-10T14:10
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Na8d4977c4ebf4217a8cfad7d21caa55b
44 schema:url http://link.springer.com/10.1007%2Fs00521-015-1956-2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N089626cf27e7415abd234e406cc90eed schema:volumeNumber 27
49 rdf:type schema:PublicationVolume
50 N2ab8d498f2c846029097876a975c99fc schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
51 schema:familyName Tang
52 schema:givenName Yumei
53 rdf:type schema:Person
54 N2d094892f84347569373dd78c5515fec schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
55 schema:familyName Wang
56 schema:givenName Jiaqi
57 rdf:type schema:Person
58 N46bdbf95563446fd9c2e91f3c5c14dd5 schema:name General Electric Company (China), Shanghai, China
59 rdf:type schema:Organization
60 N497ddcc573734d8c850146f64d3117f2 rdf:first N2d094892f84347569373dd78c5515fec
61 rdf:rest N4dbcb73f4beb4ebe8adfaee7ce88358b
62 N4dbcb73f4beb4ebe8adfaee7ce88358b rdf:first Nb17f3546f1cb408b93a960943f6c74d4
63 rdf:rest rdf:nil
64 N710ba3dda08245649c45b20704930c00 rdf:first sg:person.015750561615.51
65 rdf:rest N982c4fae1239498b8c2ea4f18d9a06d4
66 N87fec44996c84b13a44d6e8357c10b2c rdf:first N2ab8d498f2c846029097876a975c99fc
67 rdf:rest N497ddcc573734d8c850146f64d3117f2
68 N8e3711a10cca46419fbb7060fd2d2f38 schema:issueNumber 6
69 rdf:type schema:PublicationIssue
70 N982c4fae1239498b8c2ea4f18d9a06d4 rdf:first sg:person.011200627256.21
71 rdf:rest N9d1fdc952bbf4a96b1bbecf70e5a38b4
72 N9d1fdc952bbf4a96b1bbecf70e5a38b4 rdf:first sg:person.013371150656.83
73 rdf:rest N87fec44996c84b13a44d6e8357c10b2c
74 Na7b3b5fd326f427c8263b2e280c75c24 schema:name doi
75 schema:value 10.1007/s00521-015-1956-2
76 rdf:type schema:PropertyValue
77 Na8d4977c4ebf4217a8cfad7d21caa55b schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nb17f3546f1cb408b93a960943f6c74d4 schema:affiliation N46bdbf95563446fd9c2e91f3c5c14dd5
80 schema:familyName Wang
81 schema:givenName Dan
82 rdf:type schema:Person
83 Nd16b2559feef4b0fb9cbc11a9b663ea9 schema:name dimensions_id
84 schema:value pub.1039996047
85 rdf:type schema:PropertyValue
86 Nfb7d1f9cd9fa420ca4f0b16aa9e1b432 schema:name readcube_id
87 schema:value be866fb3613db58a910a6d8ccd9d69c82849b20f534cad6b8bd510665158d61a
88 rdf:type schema:PropertyValue
89 Nfdc7521bf98d4865816a74fb0f082d97 rdf:first sg:person.01012222774.50
90 rdf:rest N710ba3dda08245649c45b20704930c00
91 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
92 schema:name Technology
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
95 schema:name Communications Technologies
96 rdf:type schema:DefinedTerm
97 sg:grant.6994059 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-015-1956-2
98 rdf:type schema:MonetaryGrant
99 sg:journal.1104357 schema:issn 0941-0643
100 1433-3058
101 schema:name Neural Computing and Applications
102 rdf:type schema:Periodical
103 sg:person.01012222774.50 schema:affiliation https://www.grid.ac/institutes/grid.440723.6
104 schema:familyName Luo
105 schema:givenName Qinghua
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012222774.50
107 rdf:type schema:Person
108 sg:person.011200627256.21 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
109 schema:familyName Li
110 schema:givenName Junbao
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011200627256.21
112 rdf:type schema:Person
113 sg:person.013371150656.83 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
114 schema:familyName Peng
115 schema:givenName Yu
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371150656.83
117 rdf:type schema:Person
118 sg:person.015750561615.51 schema:affiliation https://www.grid.ac/institutes/grid.440723.6
119 schema:familyName Yan
120 schema:givenName Xiaozhen
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750561615.51
122 rdf:type schema:Person
123 https://doi.org/10.1016/j.measurement.2014.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033209796
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1049/el.2013.1729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056754357
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/i2mtc.2012.6229338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094917457
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/icon.2013.6781987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093495776
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icosst.2012.6472830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094410452
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/infcom.2000.832252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094379045
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/ipsn.2005.1440903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095024709
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/jsen.2011.2173190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061321979
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/jsen.2013.2255591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322581
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/jsen.2013.2258905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322619
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/jsen.2013.2278864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322861
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/lcomm.2014.2320939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061350643
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tie.2009.2022073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623853
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tim.2014.2347691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061639999
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tmc.2010.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061690446
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tsp.2014.2314064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804320
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/1298091.1298094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021993656
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/1614320.1614357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051591120
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3390/s130303951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036572005
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3390/s140406584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018938140
162 rdf:type schema:CreativeWork
163 https://doi.org/10.3724/sp.j.1004.2012.01190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071316914
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
166 schema:name School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China
167 School of Information and Electrical Engineering, Harbin Institute of Technology at WeiHai, Weihai, China
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.440723.6 schema:alternateName Guilin University of Electronic Technology
170 schema:name Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Guilin University of Electronic Technology), State Key Laboratory of Geo-information Engineering, State Key Laboratory of Satellite Navigation Engineering technology, Guilin, Xi’an, Shijiazhuang, China
171 School of Information and Electrical Engineering, Harbin Institute of Technology at WeiHai, Weihai, China
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...