Use of neural networks for the prediction of the CBR value of some Aegean sands View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Yusuf Erzin, D. Turkoz

ABSTRACT

This study deals with the development of an artificial neural network (ANN) and a multiple regression (MR) model that can be employed for estimating the California bearing ratio (CBR) value of some Aegean sands. To achieve this, the results of CBR tests performed on the compacted specimens of nine different Aegean sands with varying soil properties were used in the development of the ANN and MR models. The results of the ANN and MR models were compared with those obtained from the experiments. It is found that the CBR values predicted from the ANN model matched the experimental values much better than the MR model. Moreover, several performance indices, such as coefficient of determination, root-mean-square error, mean absolute error, and variance, were used to evaluate the prediction performance of the ANN and MR models. The ANN model has shown higher prediction performance than the MR model based on the performance indices, which demonstrates the usefulness and efficiency of the ANN model. Thus, the ANN model can be used to predict CBR value of the Aegean sands included in this study as an inexpensive substitute for the laboratory testing, quite easily and efficiently. More... »

PAGES

1415-1426

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-015-1943-7

DOI

http://dx.doi.org/10.1007/s00521-015-1943-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005382147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Celal Bayar University", 
          "id": "https://www.grid.ac/institutes/grid.411688.2", 
          "name": [
            "Department of Civil Engineering, Celal Bayar University, 45140, Manisa, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erzin", 
        "givenName": "Yusuf", 
        "id": "sg:person.01103335505.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103335505.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celal Bayar University", 
          "id": "https://www.grid.ac/institutes/grid.411688.2", 
          "name": [
            "Department of Civil Engineering, Celal Bayar University, 45140, Manisa, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turkoz", 
        "givenName": "D.", 
        "id": "sg:person.015337056673.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337056673.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2007.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001117501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2010.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001461373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839514.2013.823326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002090744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2012.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002151329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2003.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002343563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-1302-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005216651", 
          "https://doi.org/10.1007/s00521-012-1302-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-014-0606-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006199607", 
          "https://doi.org/10.1007/s10064-014-0606-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2009.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006575553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0168-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007479143", 
          "https://doi.org/10.1007/s10064-008-0168-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0168-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007479143", 
          "https://doi.org/10.1007/s10064-008-0168-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-008-1300-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008234664", 
          "https://doi.org/10.1007/s00254-008-1300-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-008-1300-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008234664", 
          "https://doi.org/10.1007/s00254-008-1300-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02644401111141037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008317991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14680629.2012.757557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013301335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14680629.2012.757557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013301335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-006-0075-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013673018", 
          "https://doi.org/10.1007/s10064-006-0075-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-006-0075-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013673018", 
          "https://doi.org/10.1007/s10064-006-0075-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/mca16020425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013696490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2009.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017001188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2006.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017946004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2009.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017980762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-009-0035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018402843", 
          "https://doi.org/10.1007/s12517-009-0035-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022449238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-007-0138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024289044", 
          "https://doi.org/10.1007/s00603-007-0138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-007-0138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024289044", 
          "https://doi.org/10.1007/s00603-007-0138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t09-035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024471872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026429092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0954-1810(94)00011-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028083880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.261-263.675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028746237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2007.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-4105(00)00096-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029545150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(02)00023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029647282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t07-052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031377583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-352x(99)00002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035845787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.12.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040085687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1064119x.2010.514232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043952947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0148-9062(99)00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2006.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045470606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-1123(02)00113-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-1123(02)00113-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-004-8680-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053172455", 
          "https://doi.org/10.1007/s10706-004-8680-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-012-0424-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053415426", 
          "https://doi.org/10.1007/s10064-012-0424-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2010.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053587613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(1995)9:4(275)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(2000)14:2(109)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(2004)18:2(105)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2002)128:9(785)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/gae.2013.5.6.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064860643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/gae.2014.6.1.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064860647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1962.12.4.271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068208942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2462/09670513.657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070772916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b13165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095904472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511812651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665985"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "This study deals with the development of an artificial neural network (ANN) and a multiple regression (MR) model that can be employed for estimating the California bearing ratio (CBR) value of some Aegean sands. To achieve this, the results of CBR tests performed on the compacted specimens of nine different Aegean sands with varying soil properties were used in the development of the ANN and MR models. The results of the ANN and MR models were compared with those obtained from the experiments. It is found that the CBR values predicted from the ANN model matched the experimental values much better than the MR model. Moreover, several performance indices, such as coefficient of determination, root-mean-square error, mean absolute error, and variance, were used to evaluate the prediction performance of the ANN and MR models. The ANN model has shown higher prediction performance than the MR model based on the performance indices, which demonstrates the usefulness and efficiency of the ANN model. Thus, the ANN model can be used to predict CBR value of the Aegean sands included in this study as an inexpensive substitute for the laboratory testing, quite easily and efficiently.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-015-1943-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Use of neural networks for the prediction of the CBR value of some Aegean sands", 
    "pagination": "1415-1426", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19a46d44fe850b34f819f6b994c88757d5ad19fd3132757e5fd1657ea970762d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-015-1943-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005382147"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-015-1943-7", 
      "https://app.dimensions.ai/details/publication/pub.1005382147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-015-1943-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1943-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1943-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1943-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-015-1943-7'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-015-1943-7 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N1b6efcf6b24d4dba90c2bcc3306ea6a6
4 schema:citation sg:pub.10.1007/s00254-008-1300-6
5 sg:pub.10.1007/s00521-012-1302-x
6 sg:pub.10.1007/s00603-007-0138-7
7 sg:pub.10.1007/s10064-006-0075-9
8 sg:pub.10.1007/s10064-008-0168-8
9 sg:pub.10.1007/s10064-012-0424-9
10 sg:pub.10.1007/s10064-014-0606-8
11 sg:pub.10.1007/s10706-004-8680-5
12 sg:pub.10.1007/s12517-009-0035-3
13 https://doi.org/10.1016/0893-6080(89)90020-8
14 https://doi.org/10.1016/0954-1810(94)00011-s
15 https://doi.org/10.1016/j.advengsoft.2010.01.003
16 https://doi.org/10.1016/j.asoc.2010.10.008
17 https://doi.org/10.1016/j.cageo.2012.09.003
18 https://doi.org/10.1016/j.compgeo.2005.02.003
19 https://doi.org/10.1016/j.compgeo.2005.06.002
20 https://doi.org/10.1016/j.compgeo.2006.08.006
21 https://doi.org/10.1016/j.compgeo.2006.08.007
22 https://doi.org/10.1016/j.compgeo.2007.08.002
23 https://doi.org/10.1016/j.compgeo.2009.01.003
24 https://doi.org/10.1016/j.engappai.2003.11.006
25 https://doi.org/10.1016/j.enggeo.2008.08.005
26 https://doi.org/10.1016/j.eswa.2010.12.054
27 https://doi.org/10.1016/j.ijrmms.2009.03.004
28 https://doi.org/10.1016/j.ijthermalsci.2007.11.001
29 https://doi.org/10.1016/j.ijthermalsci.2009.06.008
30 https://doi.org/10.1016/j.scient.2012.02.008
31 https://doi.org/10.1016/s0013-7952(02)00023-6
32 https://doi.org/10.1016/s0142-1123(02)00113-5
33 https://doi.org/10.1016/s0148-9062(99)00007-8
34 https://doi.org/10.1016/s0266-352x(99)00002-6
35 https://doi.org/10.1016/s0920-4105(00)00096-6
36 https://doi.org/10.1017/cbo9780511812651
37 https://doi.org/10.1061/(asce)0887-3801(1995)9:4(275)
38 https://doi.org/10.1061/(asce)0887-3801(2000)14:2(109)
39 https://doi.org/10.1061/(asce)0887-3801(2004)18:2(105)
40 https://doi.org/10.1061/(asce)1090-0241(2002)128:9(785)
41 https://doi.org/10.1080/08839514.2013.823326
42 https://doi.org/10.1080/1064119x.2010.514232
43 https://doi.org/10.1080/14680629.2012.757557
44 https://doi.org/10.1108/02644401111141037
45 https://doi.org/10.1139/t07-052
46 https://doi.org/10.1139/t09-035
47 https://doi.org/10.1201/b13165
48 https://doi.org/10.12989/gae.2013.5.6.541
49 https://doi.org/10.12989/gae.2014.6.1.001
50 https://doi.org/10.1680/geot.1962.12.4.271
51 https://doi.org/10.2462/09670513.657
52 https://doi.org/10.3390/mca16020425
53 https://doi.org/10.4028/www.scientific.net/amr.261-263.675
54 schema:datePublished 2016-07
55 schema:datePublishedReg 2016-07-01
56 schema:description This study deals with the development of an artificial neural network (ANN) and a multiple regression (MR) model that can be employed for estimating the California bearing ratio (CBR) value of some Aegean sands. To achieve this, the results of CBR tests performed on the compacted specimens of nine different Aegean sands with varying soil properties were used in the development of the ANN and MR models. The results of the ANN and MR models were compared with those obtained from the experiments. It is found that the CBR values predicted from the ANN model matched the experimental values much better than the MR model. Moreover, several performance indices, such as coefficient of determination, root-mean-square error, mean absolute error, and variance, were used to evaluate the prediction performance of the ANN and MR models. The ANN model has shown higher prediction performance than the MR model based on the performance indices, which demonstrates the usefulness and efficiency of the ANN model. Thus, the ANN model can be used to predict CBR value of the Aegean sands included in this study as an inexpensive substitute for the laboratory testing, quite easily and efficiently.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N159dbc4c6dba4f26aaef6c41c7f21d29
61 N9911810632c74287b7a1df2052047a4d
62 sg:journal.1104357
63 schema:name Use of neural networks for the prediction of the CBR value of some Aegean sands
64 schema:pagination 1415-1426
65 schema:productId N7a1ed79997334fadb05831f9e82bd899
66 N7c81d0338db744adb101d1b2216ef31a
67 Nd708f261238d425fac66ccfafbbe9d6d
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005382147
69 https://doi.org/10.1007/s00521-015-1943-7
70 schema:sdDatePublished 2019-04-10T22:31
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N6d0fc3fe7bb44787858185dec730fd80
73 schema:url http://link.springer.com/10.1007%2Fs00521-015-1943-7
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N159dbc4c6dba4f26aaef6c41c7f21d29 schema:issueNumber 5
78 rdf:type schema:PublicationIssue
79 N1b6efcf6b24d4dba90c2bcc3306ea6a6 rdf:first sg:person.01103335505.91
80 rdf:rest N9af6762cb7db4867bd8e9188a285a9ca
81 N6d0fc3fe7bb44787858185dec730fd80 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N7a1ed79997334fadb05831f9e82bd899 schema:name dimensions_id
84 schema:value pub.1005382147
85 rdf:type schema:PropertyValue
86 N7c81d0338db744adb101d1b2216ef31a schema:name readcube_id
87 schema:value 19a46d44fe850b34f819f6b994c88757d5ad19fd3132757e5fd1657ea970762d
88 rdf:type schema:PropertyValue
89 N9911810632c74287b7a1df2052047a4d schema:volumeNumber 27
90 rdf:type schema:PublicationVolume
91 N9af6762cb7db4867bd8e9188a285a9ca rdf:first sg:person.015337056673.21
92 rdf:rest rdf:nil
93 Nd708f261238d425fac66ccfafbbe9d6d schema:name doi
94 schema:value 10.1007/s00521-015-1943-7
95 rdf:type schema:PropertyValue
96 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
97 schema:name Psychology and Cognitive Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
100 schema:name Psychology
101 rdf:type schema:DefinedTerm
102 sg:journal.1104357 schema:issn 0941-0643
103 1433-3058
104 schema:name Neural Computing and Applications
105 rdf:type schema:Periodical
106 sg:person.01103335505.91 schema:affiliation https://www.grid.ac/institutes/grid.411688.2
107 schema:familyName Erzin
108 schema:givenName Yusuf
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103335505.91
110 rdf:type schema:Person
111 sg:person.015337056673.21 schema:affiliation https://www.grid.ac/institutes/grid.411688.2
112 schema:familyName Turkoz
113 schema:givenName D.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337056673.21
115 rdf:type schema:Person
116 sg:pub.10.1007/s00254-008-1300-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008234664
117 https://doi.org/10.1007/s00254-008-1300-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00521-012-1302-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005216651
120 https://doi.org/10.1007/s00521-012-1302-x
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00603-007-0138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024289044
123 https://doi.org/10.1007/s00603-007-0138-7
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10064-006-0075-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013673018
126 https://doi.org/10.1007/s10064-006-0075-9
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10064-008-0168-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007479143
129 https://doi.org/10.1007/s10064-008-0168-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10064-012-0424-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053415426
132 https://doi.org/10.1007/s10064-012-0424-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10064-014-0606-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006199607
135 https://doi.org/10.1007/s10064-014-0606-8
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10706-004-8680-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172455
138 https://doi.org/10.1007/s10706-004-8680-5
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s12517-009-0035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018402843
141 https://doi.org/10.1007/s12517-009-0035-3
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0954-1810(94)00011-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1028083880
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.advengsoft.2010.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001461373
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.asoc.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053587613
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.cageo.2012.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002151329
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.compgeo.2005.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379047
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.compgeo.2005.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053243162
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.compgeo.2006.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017946004
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.compgeo.2006.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045470606
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.compgeo.2007.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029183142
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.compgeo.2009.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006575553
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.engappai.2003.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002343563
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.enggeo.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026429092
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.eswa.2010.12.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040085687
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijrmms.2009.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017980762
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijthermalsci.2007.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001117501
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ijthermalsci.2009.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017001188
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.scient.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449238
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0013-7952(02)00023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029647282
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0142-1123(02)00113-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802974
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0148-9062(99)00007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532046
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0266-352x(99)00002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035845787
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0920-4105(00)00096-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029545150
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1017/cbo9780511812651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665985
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1061/(asce)0887-3801(1995)9:4(275) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609099
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1061/(asce)0887-3801(2000)14:2(109) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609294
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1061/(asce)0887-3801(2004)18:2(105) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609434
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1061/(asce)1090-0241(2002)128:9(785) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618582
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1080/08839514.2013.823326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002090744
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1080/1064119x.2010.514232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043952947
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1080/14680629.2012.757557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013301335
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1108/02644401111141037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008317991
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1139/t07-052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031377583
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1139/t09-035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024471872
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1201/b13165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095904472
212 rdf:type schema:CreativeWork
213 https://doi.org/10.12989/gae.2013.5.6.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064860643
214 rdf:type schema:CreativeWork
215 https://doi.org/10.12989/gae.2014.6.1.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064860647
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1680/geot.1962.12.4.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068208942
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2462/09670513.657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070772916
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3390/mca16020425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013696490
222 rdf:type schema:CreativeWork
223 https://doi.org/10.4028/www.scientific.net/amr.261-263.675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028746237
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.411688.2 schema:alternateName Celal Bayar University
226 schema:name Department of Civil Engineering, Celal Bayar University, 45140, Manisa, Turkey
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...