Optimization of specific energy consumption for Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using Taguchi-neural method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Yalçın Şevki Yildiz, Ercan Şenyiğit, Şahset İrdemez

ABSTRACT

In this investigation, firstly, Taguchi method was applied to determine the optimum specific energy consumption (SEC) for dye removal from aqueous solution by electrocoagulation using aluminum electrodes. An orthogonal array (OA16) experimental design that allows to investigate the simultaneous variations of five parameters (Initial dye concentration, Initial pH of the solution, Supporting electrolyte concentration, Supporting electrolyte type and Current density) having four levels was employed to evaluate the effects of experimental parameters with two replicates. According to Taguchi-neural method, while the optimum conditions that dye removal efficiency equals to 62.71 % were found to be initial dye concentration 600 mg/L, initial pH of the solution 6, supporting electrolyte concentration 7.0 mM, supporting electrolyte type NaCl, and current density 0.10 mA/cm2. Under these optimum conditions, energy consumption is 0.38 kW h/m3. Alternatively, it can be said that optimum conditions can be modified as follows supporting electrolyte concentration of 10.0 mM and supporting electrolyte type CaCl2, for 600 mg/L, initial dye concentration initial pH of the solution 6, and current density 0.10 mA/cm2. Under these optimum conditions, SEC and dye removal efficiency are 0.45 kW h/m3 and 69.18 %, respectively. More... »

PAGES

1061-1069

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-012-1031-1

DOI

http://dx.doi.org/10.1007/s00521-012-1031-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049484295


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Erciyes University", 
          "id": "https://www.grid.ac/institutes/grid.411739.9", 
          "name": [
            "Department of Environmental Engineering, Erciyes University, 38039, Kayseri, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yildiz", 
        "givenName": "Yal\u00e7\u0131n \u015eevki", 
        "id": "sg:person.01366036607.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036607.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erciyes University", 
          "id": "https://www.grid.ac/institutes/grid.411739.9", 
          "name": [
            "Department of Industrial Engineering, Erciyes University, 38039, Kayseri, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u015eenyi\u011fit", 
        "givenName": "Ercan", 
        "id": "sg:person.011214746712.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214746712.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atat\u00fcrk University", 
          "id": "https://www.grid.ac/institutes/grid.411445.1", 
          "name": [
            "Department of Environmental Engineering, Atat\u00fcrk University, 25240, Erzurum, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0130rdemez", 
        "givenName": "\u015eahset", 
        "id": "sg:person.015012244477.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012244477.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2005.07.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001720252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2010.03.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005122722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2006.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006725593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.10.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008064284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2010.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009887811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2003.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010322525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2011.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010929136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-9164(02)00941-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011136963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-9164(02)00941-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011136963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(93)90112-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013004751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(93)90112-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013004751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5004/dwt.2011.2119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013234000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02705687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018683853", 
          "https://doi.org/10.1007/bf02705687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02705687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018683853", 
          "https://doi.org/10.1007/bf02705687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(02)00362-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019409771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0956-053x(02)00015-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028621647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2011.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031324017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2007.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044331374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045296608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2008.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046678976"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "In this investigation, firstly, Taguchi method was applied to determine the optimum specific energy consumption (SEC) for dye removal from aqueous solution by electrocoagulation using aluminum electrodes. An orthogonal array (OA16) experimental design that allows to investigate the simultaneous variations of five parameters (Initial dye concentration, Initial pH of the solution, Supporting electrolyte concentration, Supporting electrolyte type and Current density) having four levels was employed to evaluate the effects of experimental parameters with two replicates. According to Taguchi-neural method, while the optimum conditions that dye removal efficiency equals to 62.71 % were found to be initial dye concentration 600 mg/L, initial pH of the solution 6, supporting electrolyte concentration 7.0 mM, supporting electrolyte type NaCl, and current density 0.10 mA/cm2. Under these optimum conditions, energy consumption is 0.38 kW h/m3. Alternatively, it can be said that optimum conditions can be modified as follows supporting electrolyte concentration of 10.0 mM and supporting electrolyte type CaCl2, for 600 mg/L, initial dye concentration initial pH of the solution 6, and current density 0.10 mA/cm2. Under these optimum conditions, SEC and dye removal efficiency are 0.45 kW h/m3 and 69.18 %, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-012-1031-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Optimization of specific energy consumption for Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using Taguchi-neural method", 
    "pagination": "1061-1069", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebbb18ca1c1d24c007150fd168ad8fe41cfe16c6ef856ad2fc37fbc3aa4d65e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-012-1031-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049484295"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-012-1031-1", 
      "https://app.dimensions.ai/details/publication/pub.1049484295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-012-1031-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-1031-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-1031-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-1031-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-1031-1'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-012-1031-1 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb39ce82db8a741e99e597f329718f155
4 schema:citation sg:pub.10.1007/bf02705687
5 https://doi.org/10.1016/0043-1354(93)90112-u
6 https://doi.org/10.1016/j.applthermaleng.2011.04.022
7 https://doi.org/10.1016/j.cej.2010.03.049
8 https://doi.org/10.1016/j.cep.2003.11.003
9 https://doi.org/10.1016/j.desal.2011.04.018
10 https://doi.org/10.1016/j.ijhydene.2010.07.007
11 https://doi.org/10.1016/j.jhazmat.2005.07.084
12 https://doi.org/10.1016/j.jhazmat.2006.09.016
13 https://doi.org/10.1016/j.jhazmat.2010.10.100
14 https://doi.org/10.1016/j.renene.2008.03.006
15 https://doi.org/10.1016/j.seppur.2003.09.002
16 https://doi.org/10.1016/j.seppur.2007.01.031
17 https://doi.org/10.1016/s0011-9164(02)00941-4
18 https://doi.org/10.1016/s0168-1656(02)00362-0
19 https://doi.org/10.1016/s0956-053x(02)00015-6
20 https://doi.org/10.5004/dwt.2011.2119
21 schema:datePublished 2013-09
22 schema:datePublishedReg 2013-09-01
23 schema:description In this investigation, firstly, Taguchi method was applied to determine the optimum specific energy consumption (SEC) for dye removal from aqueous solution by electrocoagulation using aluminum electrodes. An orthogonal array (OA16) experimental design that allows to investigate the simultaneous variations of five parameters (Initial dye concentration, Initial pH of the solution, Supporting electrolyte concentration, Supporting electrolyte type and Current density) having four levels was employed to evaluate the effects of experimental parameters with two replicates. According to Taguchi-neural method, while the optimum conditions that dye removal efficiency equals to 62.71 % were found to be initial dye concentration 600 mg/L, initial pH of the solution 6, supporting electrolyte concentration 7.0 mM, supporting electrolyte type NaCl, and current density 0.10 mA/cm2. Under these optimum conditions, energy consumption is 0.38 kW h/m3. Alternatively, it can be said that optimum conditions can be modified as follows supporting electrolyte concentration of 10.0 mM and supporting electrolyte type CaCl2, for 600 mg/L, initial dye concentration initial pH of the solution 6, and current density 0.10 mA/cm2. Under these optimum conditions, SEC and dye removal efficiency are 0.45 kW h/m3 and 69.18 %, respectively.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N69f418b369d241d590df42d2b4b02a0f
28 N876407eaa8b747b1be3c518c6df23ffd
29 sg:journal.1104357
30 schema:name Optimization of specific energy consumption for Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using Taguchi-neural method
31 schema:pagination 1061-1069
32 schema:productId N1d166c4a6abe4b96bc2fe1465d69349f
33 Nf19f65abc6b8496a9ffa198acc62035c
34 Nfd88c500fe554ac0be6edcf113a8f921
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049484295
36 https://doi.org/10.1007/s00521-012-1031-1
37 schema:sdDatePublished 2019-04-10T16:43
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nec07211cae8749e69bc1096c80b07887
40 schema:url http://link.springer.com/10.1007%2Fs00521-012-1031-1
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1d166c4a6abe4b96bc2fe1465d69349f schema:name doi
45 schema:value 10.1007/s00521-012-1031-1
46 rdf:type schema:PropertyValue
47 N32bbc93f5ce04602a51103b9b704b50d rdf:first sg:person.015012244477.99
48 rdf:rest rdf:nil
49 N69f418b369d241d590df42d2b4b02a0f schema:volumeNumber 23
50 rdf:type schema:PublicationVolume
51 N731d6995fa0f457080c09a755faa39b6 rdf:first sg:person.011214746712.74
52 rdf:rest N32bbc93f5ce04602a51103b9b704b50d
53 N876407eaa8b747b1be3c518c6df23ffd schema:issueNumber 3-4
54 rdf:type schema:PublicationIssue
55 Nb39ce82db8a741e99e597f329718f155 rdf:first sg:person.01366036607.88
56 rdf:rest N731d6995fa0f457080c09a755faa39b6
57 Nec07211cae8749e69bc1096c80b07887 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nf19f65abc6b8496a9ffa198acc62035c schema:name dimensions_id
60 schema:value pub.1049484295
61 rdf:type schema:PropertyValue
62 Nfd88c500fe554ac0be6edcf113a8f921 schema:name readcube_id
63 schema:value ebbb18ca1c1d24c007150fd168ad8fe41cfe16c6ef856ad2fc37fbc3aa4d65e7
64 rdf:type schema:PropertyValue
65 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
66 schema:name Chemical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Chemistry (incl. Structural)
70 rdf:type schema:DefinedTerm
71 sg:journal.1104357 schema:issn 0941-0643
72 1433-3058
73 schema:name Neural Computing and Applications
74 rdf:type schema:Periodical
75 sg:person.011214746712.74 schema:affiliation https://www.grid.ac/institutes/grid.411739.9
76 schema:familyName Şenyiğit
77 schema:givenName Ercan
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214746712.74
79 rdf:type schema:Person
80 sg:person.01366036607.88 schema:affiliation https://www.grid.ac/institutes/grid.411739.9
81 schema:familyName Yildiz
82 schema:givenName Yalçın Şevki
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036607.88
84 rdf:type schema:Person
85 sg:person.015012244477.99 schema:affiliation https://www.grid.ac/institutes/grid.411445.1
86 schema:familyName İrdemez
87 schema:givenName Şahset
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012244477.99
89 rdf:type schema:Person
90 sg:pub.10.1007/bf02705687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018683853
91 https://doi.org/10.1007/bf02705687
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0043-1354(93)90112-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1013004751
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.applthermaleng.2011.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031324017
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.cej.2010.03.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005122722
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.cep.2003.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010322525
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.desal.2011.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010929136
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ijhydene.2010.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009887811
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jhazmat.2005.07.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001720252
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jhazmat.2006.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006725593
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jhazmat.2010.10.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008064284
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.renene.2008.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046678976
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.seppur.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045296608
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.seppur.2007.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044331374
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0011-9164(02)00941-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011136963
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0168-1656(02)00362-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019409771
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0956-053x(02)00015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028621647
122 rdf:type schema:CreativeWork
123 https://doi.org/10.5004/dwt.2011.2119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013234000
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.411445.1 schema:alternateName Atatürk University
126 schema:name Department of Environmental Engineering, Atatürk University, 25240, Erzurum, Turkey
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.411739.9 schema:alternateName Erciyes University
129 schema:name Department of Environmental Engineering, Erciyes University, 38039, Kayseri, Turkey
130 Department of Industrial Engineering, Erciyes University, 38039, Kayseri, Turkey
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...