Rule extraction from support vector machines by genetic algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Yan-Cheng Chen, Chao-Ton Su, Taho Yang

ABSTRACT

Support vector machines (SVMs) are state-of-the-art tools used to address issues pertinent to classification. However, the explanation capabilities of SVMs are also their main weakness, which is why SVMs are typically regarded as incomprehensible black box models. In the present study, a rule extraction algorithm to extract the comprehensible rule from SVMs and enhance their explanation capability is proposed. The proposed algorithm seeks to use the support vectors from a training model of SVMs and combine genetic algorithms for constructing rule sets. The proposed method can not only generate rule sets from SVMs based on the mixed discrete and continuous variables but can also select important variables in the rule set simultaneously. Measurements of accuracy, sensitivity, specificity, and fidelity are utilized to compare the performance of the proposed method with direct learner algorithms and several rule-extraction techniques from SVMs. The results indicate that the proposed method performs at least as well as with the most successful direct rule learners. Finally, an actual case of pressure ulcer was studied, and the results indicated the practicality of our proposed method in real applications. More... »

PAGES

729-739

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-012-0985-3

DOI

http://dx.doi.org/10.1007/s00521-012-0985-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007321380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Chung Shan Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.453340.5", 
          "name": [
            "Chung-Shan Institute of Science and Technology, No. 15, Shi Qi Zi, Gaoping village, Longtan Township, Taoyuan County, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yan-Cheng", 
        "id": "sg:person.0741147111.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741147111.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Room 820, Engineering Building I, 101, Sec. 2, Kuang Fu Road, 30013, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Chao-Ton", 
        "id": "sg:person.016137101441.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cheng Kung University", 
          "id": "https://www.grid.ac/institutes/grid.64523.36", 
          "name": [
            "Institute of Manufacturing Information and Systems, National Cheng Kung University, Tainan City, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Taho", 
        "id": "sg:person.07515377205.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515377205.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1081870.1081878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001658848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75390-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002900312", 
          "https://doi.org/10.1007/978-3-540-75390-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75390-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002900312", 
          "https://doi.org/10.1007/978-3-540-75390-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0933-3657(03)00002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004951892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0933-3657(03)00002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004951892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50023-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013049849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2004.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014210933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03315-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017945027", 
          "https://doi.org/10.1007/978-3-662-03315-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03315-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017945027", 
          "https://doi.org/10.1007/978-3-662-03315-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04923-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022421991", 
          "https://doi.org/10.1007/978-3-662-04923-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04923-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022421991", 
          "https://doi.org/10.1007/978-3-662-04923-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007601015854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024581499", 
          "https://doi.org/10.1023/a:1007601015854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/his-2004-13-404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032034522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009715923555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042048349", 
          "https://doi.org/10.1023/a:1009715923555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052201206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.299696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/51.853480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061185069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.190610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2008.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2008.2002909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796856"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "Support vector machines (SVMs) are state-of-the-art tools used to address issues pertinent to classification. However, the explanation capabilities of SVMs are also their main weakness, which is why SVMs are typically regarded as incomprehensible black box models. In the present study, a rule extraction algorithm to extract the comprehensible rule from SVMs and enhance their explanation capability is proposed. The proposed algorithm seeks to use the support vectors from a training model of SVMs and combine genetic algorithms for constructing rule sets. The proposed method can not only generate rule sets from SVMs based on the mixed discrete and continuous variables but can also select important variables in the rule set simultaneously. Measurements of accuracy, sensitivity, specificity, and fidelity are utilized to compare the performance of the proposed method with direct learner algorithms and several rule-extraction techniques from SVMs. The results indicate that the proposed method performs at least as well as with the most successful direct rule learners. Finally, an actual case of pressure ulcer was studied, and the results indicated the practicality of our proposed method in real applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-012-0985-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Rule extraction from support vector machines by genetic algorithms", 
    "pagination": "729-739", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22dfc98b787d00027d77b46b6b80017e1b7bcbf03f74a0b598999542061fd641"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-012-0985-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007321380"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-012-0985-3", 
      "https://app.dimensions.ai/details/publication/pub.1007321380"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-012-0985-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-0985-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-0985-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-0985-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-012-0985-3'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-012-0985-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2bb36e87ee084b3eb562489c364d99db
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/978-3-540-75390-2_1
6 sg:pub.10.1007/978-3-662-03315-9
7 sg:pub.10.1007/978-3-662-04923-5
8 sg:pub.10.1023/a:1007601015854
9 sg:pub.10.1023/a:1009715923555
10 https://doi.org/10.1016/b978-1-55860-377-6.50023-2
11 https://doi.org/10.1016/j.ejor.2004.05.018
12 https://doi.org/10.1016/j.neucom.2010.02.016
13 https://doi.org/10.1016/s0933-3657(03)00002-2
14 https://doi.org/10.1109/21.299696
15 https://doi.org/10.1109/51.853480
16 https://doi.org/10.1109/tkde.2007.190610
17 https://doi.org/10.1109/tkde.2008.131
18 https://doi.org/10.1109/tsmcb.2008.2002909
19 https://doi.org/10.1145/1081870.1081878
20 https://doi.org/10.1145/1656274.1656278
21 https://doi.org/10.3233/his-2004-13-404
22 schema:datePublished 2013-09
23 schema:datePublishedReg 2013-09-01
24 schema:description Support vector machines (SVMs) are state-of-the-art tools used to address issues pertinent to classification. However, the explanation capabilities of SVMs are also their main weakness, which is why SVMs are typically regarded as incomprehensible black box models. In the present study, a rule extraction algorithm to extract the comprehensible rule from SVMs and enhance their explanation capability is proposed. The proposed algorithm seeks to use the support vectors from a training model of SVMs and combine genetic algorithms for constructing rule sets. The proposed method can not only generate rule sets from SVMs based on the mixed discrete and continuous variables but can also select important variables in the rule set simultaneously. Measurements of accuracy, sensitivity, specificity, and fidelity are utilized to compare the performance of the proposed method with direct learner algorithms and several rule-extraction techniques from SVMs. The results indicate that the proposed method performs at least as well as with the most successful direct rule learners. Finally, an actual case of pressure ulcer was studied, and the results indicated the practicality of our proposed method in real applications.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Ne3317a7822f04990a364587eaf546882
29 Nfc06f6f882484f6694c38d469d753e0a
30 sg:journal.1104357
31 schema:name Rule extraction from support vector machines by genetic algorithms
32 schema:pagination 729-739
33 schema:productId N60a85a47d24c4275904aeca0a2414f50
34 N7911b197bc524309a3a2baec031daac0
35 N993f789c22b541ffa99bec34c72c38c4
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007321380
37 https://doi.org/10.1007/s00521-012-0985-3
38 schema:sdDatePublished 2019-04-11T00:15
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nd5d5283c2016433cac5220c8383cbc46
41 schema:url http://link.springer.com/10.1007%2Fs00521-012-0985-3
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N2bb36e87ee084b3eb562489c364d99db rdf:first sg:person.0741147111.70
46 rdf:rest N415e4fee17194c05b14b02ade9dabf91
47 N415e4fee17194c05b14b02ade9dabf91 rdf:first sg:person.016137101441.02
48 rdf:rest N8ecfca3de1bc486dae93f6ba85b80836
49 N60a85a47d24c4275904aeca0a2414f50 schema:name dimensions_id
50 schema:value pub.1007321380
51 rdf:type schema:PropertyValue
52 N7911b197bc524309a3a2baec031daac0 schema:name readcube_id
53 schema:value 22dfc98b787d00027d77b46b6b80017e1b7bcbf03f74a0b598999542061fd641
54 rdf:type schema:PropertyValue
55 N8ecfca3de1bc486dae93f6ba85b80836 rdf:first sg:person.07515377205.43
56 rdf:rest rdf:nil
57 N993f789c22b541ffa99bec34c72c38c4 schema:name doi
58 schema:value 10.1007/s00521-012-0985-3
59 rdf:type schema:PropertyValue
60 Nd5d5283c2016433cac5220c8383cbc46 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Ne3317a7822f04990a364587eaf546882 schema:volumeNumber 23
63 rdf:type schema:PublicationVolume
64 Nfc06f6f882484f6694c38d469d753e0a schema:issueNumber 3-4
65 rdf:type schema:PublicationIssue
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:journal.1104357 schema:issn 0941-0643
73 1433-3058
74 schema:name Neural Computing and Applications
75 rdf:type schema:Periodical
76 sg:person.016137101441.02 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
77 schema:familyName Su
78 schema:givenName Chao-Ton
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02
80 rdf:type schema:Person
81 sg:person.0741147111.70 schema:affiliation https://www.grid.ac/institutes/grid.453340.5
82 schema:familyName Chen
83 schema:givenName Yan-Cheng
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741147111.70
85 rdf:type schema:Person
86 sg:person.07515377205.43 schema:affiliation https://www.grid.ac/institutes/grid.64523.36
87 schema:familyName Yang
88 schema:givenName Taho
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515377205.43
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
92 https://doi.org/10.1007/978-1-4757-2440-0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-540-75390-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002900312
95 https://doi.org/10.1007/978-3-540-75390-2_1
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-662-03315-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017945027
98 https://doi.org/10.1007/978-3-662-03315-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-3-662-04923-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022421991
101 https://doi.org/10.1007/978-3-662-04923-5
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1007601015854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024581499
104 https://doi.org/10.1023/a:1007601015854
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/a:1009715923555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042048349
107 https://doi.org/10.1023/a:1009715923555
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/b978-1-55860-377-6.50023-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013049849
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.ejor.2004.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014210933
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.neucom.2010.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052201206
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0933-3657(03)00002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004951892
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/21.299696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121888
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/51.853480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061185069
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tkde.2007.190610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661685
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tkde.2008.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661831
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tsmcb.2008.2002909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796856
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/1081870.1081878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001658848
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
130 rdf:type schema:CreativeWork
131 https://doi.org/10.3233/his-2004-13-404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032034522
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
134 schema:name Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Room 820, Engineering Building I, 101, Sec. 2, Kuang Fu Road, 30013, Hsinchu, Taiwan
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.453340.5 schema:alternateName National Chung Shan Institute of Science and Technology
137 schema:name Chung-Shan Institute of Science and Technology, No. 15, Shi Qi Zi, Gaoping village, Longtan Township, Taoyuan County, Taiwan
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.64523.36 schema:alternateName National Cheng Kung University
140 schema:name Institute of Manufacturing Information and Systems, National Cheng Kung University, Tainan City, Taiwan
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...