A neural network--based methodology for the recreation of high-speed impacts on metal armours View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Israel Gonzalez-Carrasco, Angel Garcia-Crespo, Belen Ruiz-Mezcua, Jose Luis Lopez-Cuadrado

ABSTRACT

The prediction of the consequences of a ballistic impact is highly relevant in the advanced material engineering. Traditionally, the solution of this kind of problems was made by means of experimental tests, analytical models or numerical simulations. In this domain, the particularities of the phenomenon at high speed increase the difficulty of the mathematical resolution of the equations associated, and the complexity of the mechanical behaviour of the materials at high strain rates complicates the numerical simulation of the problem. Therefore, this paper describes a neural network--based methodology applied to recreate the ballistic impact phenomenon. The objective of this study is threefold. Firstly, to obtain the most precise prediction possible, minimizing the amount of data used. Secondly, to discover and analyse the influence of each of the variables on the entire neuronal model. Finally, to compare the precision and performance of this methodology with other alternatives of learning machine. The empirical results have shown that the proposed methodology is an interesting approach to reliably solving ballistic impact problems. More... »

PAGES

91-107

References to SciGraph publications

  • 2009. Multilayer Perceptron Training Optimization for High Speed Impacts Classification in ADVANCES IN ELECTRICAL ENGINEERING AND COMPUTATIONAL SCIENCE
  • 2007-02. Prediction of the response under impact of steel armours using a multilayer perceptron in NEURAL COMPUTING AND APPLICATIONS
  • 2012-09. A rough margin-based ν-twin support vector machine in NEURAL COMPUTING AND APPLICATIONS
  • 1998-11. Incremental Feature Selection in APPLIED INTELLIGENCE
  • 1998-12. Establishing impacts of the inputs in a feedforward neural network in NEURAL COMPUTING AND APPLICATIONS
  • 2001-11. Development of simplified models for design and optimization of automotive structures for crashworthiness in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 1995. The Nature of Statistical Learning Theory in NONE
  • 1989-12. Approximation by superpositions of a sigmoidal function in MATHEMATICS OF CONTROL, SIGNALS, AND SYSTEMS
  • 2003-11. Numeric sensitivity analysis applied to feedforward neural networks in NEURAL COMPUTING AND APPLICATIONS
  • 2012-09. Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1

    DOI

    http://dx.doi.org/10.1007/s00521-011-0635-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028053895


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez-Carrasco", 
            "givenName": "Israel", 
            "id": "sg:person.012350277013.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garcia-Crespo", 
            "givenName": "Angel", 
            "id": "sg:person.011537037147.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruiz-Mezcua", 
            "givenName": "Belen", 
            "id": "sg:person.015556313103.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopez-Cuadrado", 
            "givenName": "Jose Luis", 
            "id": "sg:person.013775622302.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0263-8223(03)00187-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001075414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0263-8223(03)00187-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001075414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0734-743x(88)90010-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003906095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0734-743x(88)90010-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003906095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7949(01)00083-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012415514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0734-743x(99)00011-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013277182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00013285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015937159", 
              "https://doi.org/10.1007/pl00013285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01428122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017027827", 
              "https://doi.org/10.1007/bf01428122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01428122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017027827", 
              "https://doi.org/10.1007/bf01428122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfracmech.2007.06.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019161471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7949(96)00143-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019496218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0734-743x(97)00035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021309892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008363719778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022668893", 
              "https://doi.org/10.1023/a:1008363719778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7225(78)90002-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022879711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7225(78)90002-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022879711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025940886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025940886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-011-0560-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027937649", 
              "https://doi.org/10.1007/s00521-011-0560-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/2.2927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028383216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-011-0565-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029690451", 
              "https://doi.org/10.1007/s00521-011-0565-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-2312(02)00632-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030464645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-835x(00)00027-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031280664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1996.8.1.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032145208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0263-8223(03)00038-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034519332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0263-8223(03)00038-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034519332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8667.1989.tb00026.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034664427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8667.1989.tb00026.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034664427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-003-0377-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038281713", 
              "https://doi.org/10.1007/s00521-003-0377-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-2311-7_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041001793", 
              "https://doi.org/10.1007/978-90-481-2311-7_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-2311-7_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041001793", 
              "https://doi.org/10.1007/978-90-481-2311-7_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-006-0050-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041919704", 
              "https://doi.org/10.1007/s00521-006-0050-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-006-0050-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041919704", 
              "https://doi.org/10.1007/s00521-006-0050-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijimpeng.2007.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042416323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfracmech.2003.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042951002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-3093-1.50012-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045735720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046217549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046217549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/003754979807000304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046414835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/003754979807000304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046414835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1997.9.6.1245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048881401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7403(71)90111-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049544876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7403(71)90111-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049544876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/59.910780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061195045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.870038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/massp.1987.1165576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061385413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pgec.1965.264137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061435370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1972.1054863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1862680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062075616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1862680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062075616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2048626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062076737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2048626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062076737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2048626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062076737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/10/7/014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064225568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/ajassp.2006.1698.1702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071454088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icisip.2005.1529424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093249517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cidm.2009.4938627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094342309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2001.939106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095573927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511610523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098692148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1098835059", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-02", 
        "datePublishedReg": "2012-02-01", 
        "description": "The prediction of the consequences of a ballistic impact is highly relevant in the advanced material engineering. Traditionally, the solution of this kind of problems was made by means of experimental tests, analytical models or numerical simulations. In this domain, the particularities of the phenomenon at high speed increase the difficulty of the mathematical resolution of the equations associated, and the complexity of the mechanical behaviour of the materials at high strain rates complicates the numerical simulation of the problem. Therefore, this paper describes a neural network--based methodology applied to recreate the ballistic impact phenomenon. The objective of this study is threefold. Firstly, to obtain the most precise prediction possible, minimizing the amount of data used. Secondly, to discover and analyse the influence of each of the variables on the entire neuronal model. Finally, to compare the precision and performance of this methodology with other alternatives of learning machine. The empirical results have shown that the proposed methodology is an interesting approach to reliably solving ballistic impact problems.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00521-011-0635-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "A neural network--based methodology for the recreation of high-speed impacts on metal armours", 
        "pagination": "91-107", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "85a4517009f9e0ec9206bea2df3508fdc779d07e43f7be60979734a8573b2b10"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-011-0635-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028053895"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-011-0635-1", 
          "https://app.dimensions.ai/details/publication/pub.1028053895"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000588.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00521-011-0635-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-011-0635-1 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nef59007e3c7040a88c94f7f706825cf9
    4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
    5 sg:pub.10.1007/978-90-481-2311-7_32
    6 sg:pub.10.1007/bf01428122
    7 sg:pub.10.1007/bf02551274
    8 sg:pub.10.1007/pl00013285
    9 sg:pub.10.1007/s00521-003-0377-9
    10 sg:pub.10.1007/s00521-006-0050-1
    11 sg:pub.10.1007/s00521-011-0560-3
    12 sg:pub.10.1007/s00521-011-0565-y
    13 sg:pub.10.1023/a:1008363719778
    14 https://app.dimensions.ai/details/publication/pub.1098835059
    15 https://doi.org/10.1016/0020-7225(78)90002-2
    16 https://doi.org/10.1016/0020-7225(83)90105-2
    17 https://doi.org/10.1016/0020-7403(71)90111-1
    18 https://doi.org/10.1016/0020-7683(74)90050-x
    19 https://doi.org/10.1016/0734-743x(88)90010-3
    20 https://doi.org/10.1016/0893-6080(89)90020-8
    21 https://doi.org/10.1016/b978-1-4832-3093-1.50012-2
    22 https://doi.org/10.1016/j.engfracmech.2003.12.004
    23 https://doi.org/10.1016/j.engfracmech.2007.06.005
    24 https://doi.org/10.1016/j.ijimpeng.2007.08.004
    25 https://doi.org/10.1016/s0045-7825(02)00221-9
    26 https://doi.org/10.1016/s0045-7949(01)00083-9
    27 https://doi.org/10.1016/s0045-7949(96)00143-5
    28 https://doi.org/10.1016/s0263-8223(03)00038-2
    29 https://doi.org/10.1016/s0263-8223(03)00187-9
    30 https://doi.org/10.1016/s0734-743x(97)00035-3
    31 https://doi.org/10.1016/s0734-743x(99)00011-1
    32 https://doi.org/10.1016/s0925-2312(02)00632-x
    33 https://doi.org/10.1016/s1359-835x(00)00027-0
    34 https://doi.org/10.1017/cbo9780511610523
    35 https://doi.org/10.1109/59.910780
    36 https://doi.org/10.1109/72.870038
    37 https://doi.org/10.1109/cidm.2009.4938627
    38 https://doi.org/10.1109/icisip.2005.1529424
    39 https://doi.org/10.1109/ijcnn.2001.939106
    40 https://doi.org/10.1109/massp.1987.1165576
    41 https://doi.org/10.1109/pgec.1965.264137
    42 https://doi.org/10.1109/tit.1972.1054863
    43 https://doi.org/10.1111/j.1467-8667.1989.tb00026.x
    44 https://doi.org/10.1115/1.1862680
    45 https://doi.org/10.1115/1.2048626
    46 https://doi.org/10.1162/neco.1996.8.1.152
    47 https://doi.org/10.1162/neco.1997.9.6.1245
    48 https://doi.org/10.1177/003754979807000304
    49 https://doi.org/10.1209/0295-5075/10/7/014
    50 https://doi.org/10.2514/2.2927
    51 https://doi.org/10.3844/ajassp.2006.1698.1702
    52 schema:datePublished 2012-02
    53 schema:datePublishedReg 2012-02-01
    54 schema:description The prediction of the consequences of a ballistic impact is highly relevant in the advanced material engineering. Traditionally, the solution of this kind of problems was made by means of experimental tests, analytical models or numerical simulations. In this domain, the particularities of the phenomenon at high speed increase the difficulty of the mathematical resolution of the equations associated, and the complexity of the mechanical behaviour of the materials at high strain rates complicates the numerical simulation of the problem. Therefore, this paper describes a neural network--based methodology applied to recreate the ballistic impact phenomenon. The objective of this study is threefold. Firstly, to obtain the most precise prediction possible, minimizing the amount of data used. Secondly, to discover and analyse the influence of each of the variables on the entire neuronal model. Finally, to compare the precision and performance of this methodology with other alternatives of learning machine. The empirical results have shown that the proposed methodology is an interesting approach to reliably solving ballistic impact problems.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree false
    58 schema:isPartOf N86f201db424b42a4a0d819f446a9d174
    59 Needdfb055771484d9e57f788c802388f
    60 sg:journal.1104357
    61 schema:name A neural network--based methodology for the recreation of high-speed impacts on metal armours
    62 schema:pagination 91-107
    63 schema:productId N40f54fc4acd7418d8f629bdbd63ebb2e
    64 N454b5ca8a4fa4e749455b105de770ce8
    65 Ned2e20c5265249a38533922bd95d5e70
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028053895
    67 https://doi.org/10.1007/s00521-011-0635-1
    68 schema:sdDatePublished 2019-04-10T20:57
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N2d86bc0e8563404c9583325e5d32b61a
    71 schema:url http://link.springer.com/10.1007%2Fs00521-011-0635-1
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N1205cc55c3c64e789cd18a6055301692 rdf:first sg:person.015556313103.67
    76 rdf:rest N658069a099894d5893e87a7dbfadb2dd
    77 N2d86bc0e8563404c9583325e5d32b61a schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N40f54fc4acd7418d8f629bdbd63ebb2e schema:name doi
    80 schema:value 10.1007/s00521-011-0635-1
    81 rdf:type schema:PropertyValue
    82 N454b5ca8a4fa4e749455b105de770ce8 schema:name readcube_id
    83 schema:value 85a4517009f9e0ec9206bea2df3508fdc779d07e43f7be60979734a8573b2b10
    84 rdf:type schema:PropertyValue
    85 N658069a099894d5893e87a7dbfadb2dd rdf:first sg:person.013775622302.48
    86 rdf:rest rdf:nil
    87 N86f201db424b42a4a0d819f446a9d174 schema:issueNumber 1
    88 rdf:type schema:PublicationIssue
    89 N88df062b40f6448e856abc15814cbbce rdf:first sg:person.011537037147.86
    90 rdf:rest N1205cc55c3c64e789cd18a6055301692
    91 Ned2e20c5265249a38533922bd95d5e70 schema:name dimensions_id
    92 schema:value pub.1028053895
    93 rdf:type schema:PropertyValue
    94 Needdfb055771484d9e57f788c802388f schema:volumeNumber 21
    95 rdf:type schema:PublicationVolume
    96 Nef59007e3c7040a88c94f7f706825cf9 rdf:first sg:person.012350277013.42
    97 rdf:rest N88df062b40f6448e856abc15814cbbce
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Statistics
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1104357 schema:issn 0941-0643
    105 1433-3058
    106 schema:name Neural Computing and Applications
    107 rdf:type schema:Periodical
    108 sg:person.011537037147.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    109 schema:familyName Garcia-Crespo
    110 schema:givenName Angel
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86
    112 rdf:type schema:Person
    113 sg:person.012350277013.42 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    114 schema:familyName Gonzalez-Carrasco
    115 schema:givenName Israel
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42
    117 rdf:type schema:Person
    118 sg:person.013775622302.48 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    119 schema:familyName Lopez-Cuadrado
    120 schema:givenName Jose Luis
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48
    122 rdf:type schema:Person
    123 sg:person.015556313103.67 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    124 schema:familyName Ruiz-Mezcua
    125 schema:givenName Belen
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
    129 https://doi.org/10.1007/978-1-4757-2440-0
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-90-481-2311-7_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041001793
    132 https://doi.org/10.1007/978-90-481-2311-7_32
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf01428122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017027827
    135 https://doi.org/10.1007/bf01428122
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
    138 https://doi.org/10.1007/bf02551274
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/pl00013285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015937159
    141 https://doi.org/10.1007/pl00013285
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00521-003-0377-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038281713
    144 https://doi.org/10.1007/s00521-003-0377-9
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00521-006-0050-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919704
    147 https://doi.org/10.1007/s00521-006-0050-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00521-011-0560-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937649
    150 https://doi.org/10.1007/s00521-011-0560-3
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s00521-011-0565-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029690451
    153 https://doi.org/10.1007/s00521-011-0565-y
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1023/a:1008363719778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022668893
    156 https://doi.org/10.1023/a:1008363719778
    157 rdf:type schema:CreativeWork
    158 https://app.dimensions.ai/details/publication/pub.1098835059 schema:CreativeWork
    159 https://doi.org/10.1016/0020-7225(78)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022879711
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/0020-7225(83)90105-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025940886
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/0020-7403(71)90111-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049544876
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/0020-7683(74)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046217549
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0734-743x(88)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003906095
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/b978-1-4832-3093-1.50012-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045735720
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.engfracmech.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042951002
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.engfracmech.2007.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019161471
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.ijimpeng.2007.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416323
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0045-7825(02)00221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287877
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0045-7949(01)00083-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415514
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/s0045-7949(96)00143-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019496218
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/s0263-8223(03)00038-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034519332
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/s0263-8223(03)00187-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075414
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/s0734-743x(97)00035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021309892
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/s0734-743x(99)00011-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277182
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/s0925-2312(02)00632-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030464645
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/s1359-835x(00)00027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031280664
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1017/cbo9780511610523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098692148
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1109/59.910780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195045
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1109/72.870038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219466
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1109/cidm.2009.4938627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094342309
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1109/icisip.2005.1529424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093249517
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/ijcnn.2001.939106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095573927
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/massp.1987.1165576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385413
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/pgec.1965.264137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435370
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/tit.1972.1054863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647145
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1111/j.1467-8667.1989.tb00026.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664427
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1115/1.1862680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075616
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1115/1.2048626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062076737
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1162/neco.1996.8.1.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032145208
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1162/neco.1997.9.6.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048881401
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1177/003754979807000304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046414835
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1209/0295-5075/10/7/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064225568
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.2514/2.2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028383216
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.3844/ajassp.2006.1698.1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071454088
    232 rdf:type schema:CreativeWork
    233 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    234 schema:name Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...