A neural network--based methodology for the recreation of high-speed impacts on metal armours View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Israel Gonzalez-Carrasco, Angel Garcia-Crespo, Belen Ruiz-Mezcua, Jose Luis Lopez-Cuadrado

ABSTRACT

The prediction of the consequences of a ballistic impact is highly relevant in the advanced material engineering. Traditionally, the solution of this kind of problems was made by means of experimental tests, analytical models or numerical simulations. In this domain, the particularities of the phenomenon at high speed increase the difficulty of the mathematical resolution of the equations associated, and the complexity of the mechanical behaviour of the materials at high strain rates complicates the numerical simulation of the problem. Therefore, this paper describes a neural network--based methodology applied to recreate the ballistic impact phenomenon. The objective of this study is threefold. Firstly, to obtain the most precise prediction possible, minimizing the amount of data used. Secondly, to discover and analyse the influence of each of the variables on the entire neuronal model. Finally, to compare the precision and performance of this methodology with other alternatives of learning machine. The empirical results have shown that the proposed methodology is an interesting approach to reliably solving ballistic impact problems. More... »

PAGES

91-107

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1

DOI

http://dx.doi.org/10.1007/s00521-011-0635-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028053895


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez-Carrasco", 
        "givenName": "Israel", 
        "id": "sg:person.012350277013.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Crespo", 
        "givenName": "Angel", 
        "id": "sg:person.011537037147.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruiz-Mezcua", 
        "givenName": "Belen", 
        "id": "sg:person.015556313103.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopez-Cuadrado", 
        "givenName": "Jose Luis", 
        "id": "sg:person.013775622302.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0263-8223(03)00187-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001075414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0263-8223(03)00187-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001075414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(88)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003906095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(88)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003906095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(01)00083-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012415514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-743x(99)00011-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013277182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00013285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015937159", 
          "https://doi.org/10.1007/pl00013285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01428122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017027827", 
          "https://doi.org/10.1007/bf01428122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01428122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017027827", 
          "https://doi.org/10.1007/bf01428122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2007.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019161471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(96)00143-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019496218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-743x(97)00035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021309892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008363719778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022668893", 
          "https://doi.org/10.1023/a:1008363719778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(78)90002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022879711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(78)90002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022879711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025940886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025940886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-011-0560-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027937649", 
          "https://doi.org/10.1007/s00521-011-0560-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028383216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-011-0565-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029690451", 
          "https://doi.org/10.1007/s00521-011-0565-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(02)00632-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030464645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-835x(00)00027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031280664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1996.8.1.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032145208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0263-8223(03)00038-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034519332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0263-8223(03)00038-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034519332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8667.1989.tb00026.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8667.1989.tb00026.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-003-0377-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038281713", 
          "https://doi.org/10.1007/s00521-003-0377-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2311-7_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041001793", 
          "https://doi.org/10.1007/978-90-481-2311-7_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2311-7_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041001793", 
          "https://doi.org/10.1007/978-90-481-2311-7_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-006-0050-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041919704", 
          "https://doi.org/10.1007/s00521-006-0050-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-006-0050-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041919704", 
          "https://doi.org/10.1007/s00521-006-0050-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2007.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042416323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2003.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042951002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-3093-1.50012-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045735720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046217549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046217549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754979807000304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046414835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754979807000304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046414835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.6.1245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048881401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(71)90111-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049544876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(71)90111-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049544876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052287877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052287877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.910780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061195045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.870038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/massp.1987.1165576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061385413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pgec.1965.264137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061435370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1972.1054863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1862680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062075616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1862680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062075616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2048626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2048626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2048626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/10/7/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064225568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3844/ajassp.2006.1698.1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071454088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icisip.2005.1529424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093249517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cidm.2009.4938627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094342309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2001.939106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095573927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511610523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098692148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1098835059", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "The prediction of the consequences of a ballistic impact is highly relevant in the advanced material engineering. Traditionally, the solution of this kind of problems was made by means of experimental tests, analytical models or numerical simulations. In this domain, the particularities of the phenomenon at high speed increase the difficulty of the mathematical resolution of the equations associated, and the complexity of the mechanical behaviour of the materials at high strain rates complicates the numerical simulation of the problem. Therefore, this paper describes a neural network--based methodology applied to recreate the ballistic impact phenomenon. The objective of this study is threefold. Firstly, to obtain the most precise prediction possible, minimizing the amount of data used. Secondly, to discover and analyse the influence of each of the variables on the entire neuronal model. Finally, to compare the precision and performance of this methodology with other alternatives of learning machine. The empirical results have shown that the proposed methodology is an interesting approach to reliably solving ballistic impact problems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-011-0635-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A neural network--based methodology for the recreation of high-speed impacts on metal armours", 
    "pagination": "91-107", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85a4517009f9e0ec9206bea2df3508fdc779d07e43f7be60979734a8573b2b10"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-011-0635-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028053895"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-011-0635-1", 
      "https://app.dimensions.ai/details/publication/pub.1028053895"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-011-0635-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0635-1'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-011-0635-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0bfe82f5efad48d59c9cc9ae8f27572e
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/978-90-481-2311-7_32
6 sg:pub.10.1007/bf01428122
7 sg:pub.10.1007/bf02551274
8 sg:pub.10.1007/pl00013285
9 sg:pub.10.1007/s00521-003-0377-9
10 sg:pub.10.1007/s00521-006-0050-1
11 sg:pub.10.1007/s00521-011-0560-3
12 sg:pub.10.1007/s00521-011-0565-y
13 sg:pub.10.1023/a:1008363719778
14 https://app.dimensions.ai/details/publication/pub.1098835059
15 https://doi.org/10.1016/0020-7225(78)90002-2
16 https://doi.org/10.1016/0020-7225(83)90105-2
17 https://doi.org/10.1016/0020-7403(71)90111-1
18 https://doi.org/10.1016/0020-7683(74)90050-x
19 https://doi.org/10.1016/0734-743x(88)90010-3
20 https://doi.org/10.1016/0893-6080(89)90020-8
21 https://doi.org/10.1016/b978-1-4832-3093-1.50012-2
22 https://doi.org/10.1016/j.engfracmech.2003.12.004
23 https://doi.org/10.1016/j.engfracmech.2007.06.005
24 https://doi.org/10.1016/j.ijimpeng.2007.08.004
25 https://doi.org/10.1016/s0045-7825(02)00221-9
26 https://doi.org/10.1016/s0045-7949(01)00083-9
27 https://doi.org/10.1016/s0045-7949(96)00143-5
28 https://doi.org/10.1016/s0263-8223(03)00038-2
29 https://doi.org/10.1016/s0263-8223(03)00187-9
30 https://doi.org/10.1016/s0734-743x(97)00035-3
31 https://doi.org/10.1016/s0734-743x(99)00011-1
32 https://doi.org/10.1016/s0925-2312(02)00632-x
33 https://doi.org/10.1016/s1359-835x(00)00027-0
34 https://doi.org/10.1017/cbo9780511610523
35 https://doi.org/10.1109/59.910780
36 https://doi.org/10.1109/72.870038
37 https://doi.org/10.1109/cidm.2009.4938627
38 https://doi.org/10.1109/icisip.2005.1529424
39 https://doi.org/10.1109/ijcnn.2001.939106
40 https://doi.org/10.1109/massp.1987.1165576
41 https://doi.org/10.1109/pgec.1965.264137
42 https://doi.org/10.1109/tit.1972.1054863
43 https://doi.org/10.1111/j.1467-8667.1989.tb00026.x
44 https://doi.org/10.1115/1.1862680
45 https://doi.org/10.1115/1.2048626
46 https://doi.org/10.1162/neco.1996.8.1.152
47 https://doi.org/10.1162/neco.1997.9.6.1245
48 https://doi.org/10.1177/003754979807000304
49 https://doi.org/10.1209/0295-5075/10/7/014
50 https://doi.org/10.2514/2.2927
51 https://doi.org/10.3844/ajassp.2006.1698.1702
52 schema:datePublished 2012-02
53 schema:datePublishedReg 2012-02-01
54 schema:description The prediction of the consequences of a ballistic impact is highly relevant in the advanced material engineering. Traditionally, the solution of this kind of problems was made by means of experimental tests, analytical models or numerical simulations. In this domain, the particularities of the phenomenon at high speed increase the difficulty of the mathematical resolution of the equations associated, and the complexity of the mechanical behaviour of the materials at high strain rates complicates the numerical simulation of the problem. Therefore, this paper describes a neural network--based methodology applied to recreate the ballistic impact phenomenon. The objective of this study is threefold. Firstly, to obtain the most precise prediction possible, minimizing the amount of data used. Secondly, to discover and analyse the influence of each of the variables on the entire neuronal model. Finally, to compare the precision and performance of this methodology with other alternatives of learning machine. The empirical results have shown that the proposed methodology is an interesting approach to reliably solving ballistic impact problems.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N832b91a45f8d4c3abb340ec27a95d28f
59 Nb6356b2e01d143adadb4ccaa38025779
60 sg:journal.1104357
61 schema:name A neural network--based methodology for the recreation of high-speed impacts on metal armours
62 schema:pagination 91-107
63 schema:productId N94f3e588a41946ca8d728c065e928fbd
64 Nf2a803ab62e745a8b8c33e9d08b343ab
65 Nff2c0e7a6b74427b9d1b2f7f6dd38f72
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028053895
67 https://doi.org/10.1007/s00521-011-0635-1
68 schema:sdDatePublished 2019-04-10T20:57
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N04c86eace764419b9f6dee2c227dcdaa
71 schema:url http://link.springer.com/10.1007%2Fs00521-011-0635-1
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N04c86eace764419b9f6dee2c227dcdaa schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N0bfe82f5efad48d59c9cc9ae8f27572e rdf:first sg:person.012350277013.42
78 rdf:rest Nc11679ecf69a4f92ad4148ef74905a84
79 N1f8d5f20044e4935a1d60268f68cabfd rdf:first sg:person.013775622302.48
80 rdf:rest rdf:nil
81 N2756f8822eb24e59acdd501214480cd2 rdf:first sg:person.015556313103.67
82 rdf:rest N1f8d5f20044e4935a1d60268f68cabfd
83 N832b91a45f8d4c3abb340ec27a95d28f schema:volumeNumber 21
84 rdf:type schema:PublicationVolume
85 N94f3e588a41946ca8d728c065e928fbd schema:name dimensions_id
86 schema:value pub.1028053895
87 rdf:type schema:PropertyValue
88 Nb6356b2e01d143adadb4ccaa38025779 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 Nc11679ecf69a4f92ad4148ef74905a84 rdf:first sg:person.011537037147.86
91 rdf:rest N2756f8822eb24e59acdd501214480cd2
92 Nf2a803ab62e745a8b8c33e9d08b343ab schema:name doi
93 schema:value 10.1007/s00521-011-0635-1
94 rdf:type schema:PropertyValue
95 Nff2c0e7a6b74427b9d1b2f7f6dd38f72 schema:name readcube_id
96 schema:value 85a4517009f9e0ec9206bea2df3508fdc779d07e43f7be60979734a8573b2b10
97 rdf:type schema:PropertyValue
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
102 schema:name Statistics
103 rdf:type schema:DefinedTerm
104 sg:journal.1104357 schema:issn 0941-0643
105 1433-3058
106 schema:name Neural Computing and Applications
107 rdf:type schema:Periodical
108 sg:person.011537037147.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
109 schema:familyName Garcia-Crespo
110 schema:givenName Angel
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86
112 rdf:type schema:Person
113 sg:person.012350277013.42 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
114 schema:familyName Gonzalez-Carrasco
115 schema:givenName Israel
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42
117 rdf:type schema:Person
118 sg:person.013775622302.48 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
119 schema:familyName Lopez-Cuadrado
120 schema:givenName Jose Luis
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48
122 rdf:type schema:Person
123 sg:person.015556313103.67 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
124 schema:familyName Ruiz-Mezcua
125 schema:givenName Belen
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67
127 rdf:type schema:Person
128 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
129 https://doi.org/10.1007/978-1-4757-2440-0
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-90-481-2311-7_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041001793
132 https://doi.org/10.1007/978-90-481-2311-7_32
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf01428122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017027827
135 https://doi.org/10.1007/bf01428122
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
138 https://doi.org/10.1007/bf02551274
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/pl00013285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015937159
141 https://doi.org/10.1007/pl00013285
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00521-003-0377-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038281713
144 https://doi.org/10.1007/s00521-003-0377-9
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s00521-006-0050-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919704
147 https://doi.org/10.1007/s00521-006-0050-1
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00521-011-0560-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937649
150 https://doi.org/10.1007/s00521-011-0560-3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00521-011-0565-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029690451
153 https://doi.org/10.1007/s00521-011-0565-y
154 rdf:type schema:CreativeWork
155 sg:pub.10.1023/a:1008363719778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022668893
156 https://doi.org/10.1023/a:1008363719778
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1098835059 schema:CreativeWork
159 https://doi.org/10.1016/0020-7225(78)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022879711
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0020-7225(83)90105-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025940886
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0020-7403(71)90111-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049544876
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0020-7683(74)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046217549
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0734-743x(88)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003906095
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/b978-1-4832-3093-1.50012-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045735720
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.engfracmech.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042951002
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.engfracmech.2007.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019161471
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijimpeng.2007.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416323
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0045-7825(02)00221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287877
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0045-7949(01)00083-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415514
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0045-7949(96)00143-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019496218
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0263-8223(03)00038-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034519332
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0263-8223(03)00187-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075414
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0734-743x(97)00035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021309892
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0734-743x(99)00011-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277182
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0925-2312(02)00632-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030464645
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s1359-835x(00)00027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031280664
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1017/cbo9780511610523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098692148
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/59.910780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195045
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/72.870038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219466
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/cidm.2009.4938627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094342309
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/icisip.2005.1529424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093249517
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/ijcnn.2001.939106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095573927
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/massp.1987.1165576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385413
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/pgec.1965.264137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435370
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tit.1972.1054863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647145
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/j.1467-8667.1989.tb00026.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664427
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1115/1.1862680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075616
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1115/1.2048626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062076737
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1162/neco.1996.8.1.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032145208
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1162/neco.1997.9.6.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048881401
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1177/003754979807000304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046414835
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1209/0295-5075/10/7/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064225568
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2514/2.2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028383216
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3844/ajassp.2006.1698.1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071454088
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
234 schema:name Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...