Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-11

AUTHORS

Li-Fei Chen, Chao-Ton Su, Kun-Huang Chen, Pa-Chun Wang

ABSTRACT

Feature selection is a preprocessing step of data mining, in which a subset of relevant features is selected for building models. Searching for an optimal feature subset from a high-dimensional feature space is an NP-complete problem; hence, traditional optimization algorithms are inefficient in solving large-scale feature selection problems. Therefore, meta-heuristic algorithms are extensively adopted to effectively address feature selection problems. In this paper, we propose an analytical approach by integrating particle swarm optimization (PSO) and the 1-NN method. The data sets collected from UCI machine learning databases were used to evaluate the effectiveness of the proposed approach. Implementation results show that the classification accuracy of the proposed approach is significantly better than those of BPNN, LR, SVM, and C4.5. Furthermore, the proposed approach was applied to an actual case on the diagnosis of obstructive sleep apnea (OSA). After implementation, we conclude that our proposed method can help identify important factors and provide a feasible model for diagnosing medical disease. More... »

PAGES

2087-2096

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-011-0632-4

DOI

http://dx.doi.org/10.1007/s00521-011-0632-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004827798


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fu Jen Catholic University", 
          "id": "https://www.grid.ac/institutes/grid.256105.5", 
          "name": [
            "Graduate Program of Business Management, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhung Dist., 24205, New Taipei City, Taiwan, R.O.C"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li-Fei", 
        "id": "sg:person.015651305004.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651305004.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan, R.O.C"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Chao-Ton", 
        "id": "sg:person.016137101441.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan, R.O.C"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Kun-Huang", 
        "id": "sg:person.0754411726.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754411726.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.254145.3", 
          "name": [
            "Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan, R.O.C", 
            "School of Medicine, Fu Jen Catholic University, Taipei, Taiwan, R.O.C", 
            "Department of Public Health, China Medical University, Taichung, Taiwan, R.O.C"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Pa-Chun", 
        "id": "sg:person.0620141324.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620141324.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejm199304293281704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000049232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.123.4.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001446282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.123.4.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001446282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-009-9257-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001773521", 
          "https://doi.org/10.1007/s10278-009-9257-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-009-9257-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001773521", 
          "https://doi.org/10.1007/s10278-009-9257-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(98)00193-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003421783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/nmd.0b013e31816ff3bf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003950250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/nmd.0b013e31816ff3bf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003950250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/nmd.0b013e31816ff3bf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003950250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2009.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006105996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-5629(03)01010-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006440293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-5629(03)01010-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006440293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppul.1950200407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009792114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archotol.128.7.819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011057086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2004.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011994357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013605757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000196670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018326800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.164.10.2103039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023259069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2007.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027366809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjoto.2005.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033275776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-1280(03)00263-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036088319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-1280(03)00263-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036088319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaci.2003.08.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038400044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaci.2003.08.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038400044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.120.2.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043961986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.120.2.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043961986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2008.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044011355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10916-006-9023-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045941943", 
          "https://doi.org/10.1007/s10916-006-9023-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/rccm.2109080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049869635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.990132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2009.2036180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061773229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.314.7084.851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062779101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.314.7084.851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062779101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/22.5.667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074508134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/25.5.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075096536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/28.3.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077115807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1997.637339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093293147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icec.1998.699146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094218712"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-11", 
    "datePublishedReg": "2012-11-01", 
    "description": "Feature selection is a preprocessing step of data mining, in which a subset of relevant features is selected for building models. Searching for an optimal feature subset from a high-dimensional feature space is an NP-complete problem; hence, traditional optimization algorithms are inefficient in solving large-scale feature selection problems. Therefore, meta-heuristic algorithms are extensively adopted to effectively address feature selection problems. In this paper, we propose an analytical approach by integrating particle swarm optimization (PSO) and the 1-NN method. The data sets collected from UCI machine learning databases were used to evaluate the effectiveness of the proposed approach. Implementation results show that the classification accuracy of the proposed approach is significantly better than those of BPNN, LR, SVM, and C4.5. Furthermore, the proposed approach was applied to an actual case on the diagnosis of obstructive sleep apnea (OSA). After implementation, we conclude that our proposed method can help identify important factors and provide a feasible model for diagnosing medical disease.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-011-0632-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis", 
    "pagination": "2087-2096", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "170136944d6529a45404b06a8d490f38bce4374f540e2a36410331e0347d8406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-011-0632-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004827798"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-011-0632-4", 
      "https://app.dimensions.ai/details/publication/pub.1004827798"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-011-0632-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0632-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0632-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0632-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-011-0632-4'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-011-0632-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8628267b76f8443f98108d0f4ee248ac
4 schema:citation sg:pub.10.1007/s10278-009-9257-x
5 sg:pub.10.1007/s10916-006-9023-2
6 https://doi.org/10.1001/archotol.128.7.819
7 https://doi.org/10.1002/ppul.1950200407
8 https://doi.org/10.1016/j.amjoto.2005.09.002
9 https://doi.org/10.1016/j.chemolab.2009.07.004
10 https://doi.org/10.1016/j.compbiolchem.2007.09.005
11 https://doi.org/10.1016/j.cor.2008.04.003
12 https://doi.org/10.1016/j.eswa.2004.12.023
13 https://doi.org/10.1016/j.jaci.2003.08.031
14 https://doi.org/10.1016/j.patcog.2009.06.009
15 https://doi.org/10.1016/s0020-0190(98)00193-8
16 https://doi.org/10.1016/s0166-1280(03)00263-x
17 https://doi.org/10.1016/s0301-5629(03)01010-x
18 https://doi.org/10.1056/nejm199304293281704
19 https://doi.org/10.1093/sleep/22.5.667
20 https://doi.org/10.1093/sleep/25.5.497
21 https://doi.org/10.1093/sleep/28.3.309
22 https://doi.org/10.1097/nmd.0b013e31816ff3bf
23 https://doi.org/10.1109/34.990132
24 https://doi.org/10.1109/icec.1998.699146
25 https://doi.org/10.1109/icnn.1995.488968
26 https://doi.org/10.1109/icsmc.1997.637339
27 https://doi.org/10.1109/tpwrd.2009.2036180
28 https://doi.org/10.1136/bmj.314.7084.851
29 https://doi.org/10.1159/000196670
30 https://doi.org/10.1164/ajrccm.164.10.2103039
31 https://doi.org/10.1164/rccm.2109080
32 https://doi.org/10.1378/chest.120.2.625
33 https://doi.org/10.1378/chest.123.4.1127
34 schema:datePublished 2012-11
35 schema:datePublishedReg 2012-11-01
36 schema:description Feature selection is a preprocessing step of data mining, in which a subset of relevant features is selected for building models. Searching for an optimal feature subset from a high-dimensional feature space is an NP-complete problem; hence, traditional optimization algorithms are inefficient in solving large-scale feature selection problems. Therefore, meta-heuristic algorithms are extensively adopted to effectively address feature selection problems. In this paper, we propose an analytical approach by integrating particle swarm optimization (PSO) and the 1-NN method. The data sets collected from UCI machine learning databases were used to evaluate the effectiveness of the proposed approach. Implementation results show that the classification accuracy of the proposed approach is significantly better than those of BPNN, LR, SVM, and C4.5. Furthermore, the proposed approach was applied to an actual case on the diagnosis of obstructive sleep apnea (OSA). After implementation, we conclude that our proposed method can help identify important factors and provide a feasible model for diagnosing medical disease.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N69d1c0472ec84b28ba3d6ce996093135
41 Nd0fcc0a2f1f24fdb9eb77fc92424a5d2
42 sg:journal.1104357
43 schema:name Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis
44 schema:pagination 2087-2096
45 schema:productId Nb093179a1b8d4702a9f58e8f17be1d3e
46 Nc1b35a20b84440dea64441d8a4d7c557
47 Nc8700368e06c481c83b4a1e1561b16b1
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004827798
49 https://doi.org/10.1007/s00521-011-0632-4
50 schema:sdDatePublished 2019-04-11T01:59
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N2112a108f0fa4a0fa826ab3181a8d36a
53 schema:url http://link.springer.com/10.1007%2Fs00521-011-0632-4
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0b58c86019b94ead8d64e7c30c43b556 rdf:first sg:person.0620141324.98
58 rdf:rest rdf:nil
59 N2112a108f0fa4a0fa826ab3181a8d36a schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N69d1c0472ec84b28ba3d6ce996093135 schema:issueNumber 8
62 rdf:type schema:PublicationIssue
63 N836fdad20d0b484f89441c99a6edea90 rdf:first sg:person.0754411726.68
64 rdf:rest N0b58c86019b94ead8d64e7c30c43b556
65 N8628267b76f8443f98108d0f4ee248ac rdf:first sg:person.015651305004.49
66 rdf:rest Neb1a3d6b5837418b9becd8e27e1d129b
67 Nb093179a1b8d4702a9f58e8f17be1d3e schema:name doi
68 schema:value 10.1007/s00521-011-0632-4
69 rdf:type schema:PropertyValue
70 Nc1b35a20b84440dea64441d8a4d7c557 schema:name dimensions_id
71 schema:value pub.1004827798
72 rdf:type schema:PropertyValue
73 Nc8700368e06c481c83b4a1e1561b16b1 schema:name readcube_id
74 schema:value 170136944d6529a45404b06a8d490f38bce4374f540e2a36410331e0347d8406
75 rdf:type schema:PropertyValue
76 Nd0fcc0a2f1f24fdb9eb77fc92424a5d2 schema:volumeNumber 21
77 rdf:type schema:PublicationVolume
78 Neb1a3d6b5837418b9becd8e27e1d129b rdf:first sg:person.016137101441.02
79 rdf:rest N836fdad20d0b484f89441c99a6edea90
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1104357 schema:issn 0941-0643
87 1433-3058
88 schema:name Neural Computing and Applications
89 rdf:type schema:Periodical
90 sg:person.015651305004.49 schema:affiliation https://www.grid.ac/institutes/grid.256105.5
91 schema:familyName Chen
92 schema:givenName Li-Fei
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651305004.49
94 rdf:type schema:Person
95 sg:person.016137101441.02 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
96 schema:familyName Su
97 schema:givenName Chao-Ton
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02
99 rdf:type schema:Person
100 sg:person.0620141324.98 schema:affiliation https://www.grid.ac/institutes/grid.254145.3
101 schema:familyName Wang
102 schema:givenName Pa-Chun
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620141324.98
104 rdf:type schema:Person
105 sg:person.0754411726.68 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
106 schema:familyName Chen
107 schema:givenName Kun-Huang
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754411726.68
109 rdf:type schema:Person
110 sg:pub.10.1007/s10278-009-9257-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773521
111 https://doi.org/10.1007/s10278-009-9257-x
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10916-006-9023-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045941943
114 https://doi.org/10.1007/s10916-006-9023-2
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1001/archotol.128.7.819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011057086
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/ppul.1950200407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009792114
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.amjoto.2005.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033275776
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.chemolab.2009.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006105996
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.compbiolchem.2007.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027366809
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cor.2008.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044011355
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.eswa.2004.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011994357
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jaci.2003.08.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038400044
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.patcog.2009.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013605757
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0020-0190(98)00193-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003421783
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0166-1280(03)00263-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036088319
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0301-5629(03)01010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006440293
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1056/nejm199304293281704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000049232
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/sleep/22.5.667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074508134
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/sleep/25.5.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075096536
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/sleep/28.3.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077115807
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1097/nmd.0b013e31816ff3bf schema:sameAs https://app.dimensions.ai/details/publication/pub.1003950250
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/34.990132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157377
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/icec.1998.699146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094218712
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/icsmc.1997.637339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093293147
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tpwrd.2009.2036180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061773229
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1136/bmj.314.7084.851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062779101
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1159/000196670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018326800
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1164/ajrccm.164.10.2103039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023259069
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1164/rccm.2109080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049869635
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1378/chest.120.2.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043961986
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1378/chest.123.4.1127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001446282
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.254145.3 schema:alternateName China Medical University
173 schema:name Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan, R.O.C
174 Department of Public Health, China Medical University, Taichung, Taiwan, R.O.C
175 School of Medicine, Fu Jen Catholic University, Taipei, Taiwan, R.O.C
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.256105.5 schema:alternateName Fu Jen Catholic University
178 schema:name Graduate Program of Business Management, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhung Dist., 24205, New Taipei City, Taiwan, R.O.C
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
181 schema:name Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...