Analysis of emergent symmetry breaking in collective decision making View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04-28

AUTHORS

Heiko Hamann, Thomas Schmickl, Heinz Wörn, Karl Crailsheim

ABSTRACT

We investigate a simulated multi-agent system (MAS) that collectively decides to aggregate at an area of high utility. The agents’ control algorithm is based on random agent–agent encounters and is inspired by the aggregation behavior of honeybees. In this article, we define symmetry breaking, several symmetry breaking measures, and report the phenomenon of emergent symmetry breaking within our observed system. The ability of the MAS to successfully break the symmetry depends significantly on a local-neighborhood-based threshold of the agents’ control algorithm that determines at which number of neighbors the agents stop. This dependency is analyzed and two macroscopic features are determined that significantly influence the symmetry breaking behavior. In addition, we investigate the connection between the ability of the MAS to break symmetries and the ability to stay flexible in a dynamic environment. More... »

PAGES

207-218

References to SciGraph publications

  • 2008-09-03. Self-organization, collective decision making and resource exploitation strategies in social insects in THE EUROPEAN PHYSICAL JOURNAL B
  • 2005. Aggregation Behaviour as a Source of Collective Decision in a Group of Cockroach-Like-Robots in ADVANCES IN ARTIFICIAL LIFE
  • 2008-08-08. Get in touch: cooperative decision making based on robot-to-robot collisions in AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS
  • 2007-12-22. Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm in AUTONOMOUS ROBOTS
  • 2003-11-21. Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor barbarus in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 1991-04. Collective decision-making in honey bees: how colonies choose among nectar sources in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2003-07-22. Choosing a home: how the scouts in a honey bee swarm perceive the completion of their group decision making in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2008-01-01. Noise-Induced Adaptive Decision-Making in Ant-Foraging in FROM ANIMALS TO ANIMATS 10
  • 2002-03-27. Self-organization in collective honeybee foraging: emergence of symmetry breaking, cross inhibition and equal harvest-rate distribution in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2004-03. Optimal traffic organization in ants under crowded conditions in NATURE
  • 1990-03. Kinetics of larval gregarious behavior in the bark beetleDendroctonus micans (Coleoptera: Scolytidae) in JOURNAL OF INSECT BEHAVIOR
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-010-0368-6

    DOI

    http://dx.doi.org/10.1007/s00521-010-0368-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042510590


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamann", 
            "givenName": "Heiko", 
            "id": "sg:person.01252067245.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252067245.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmickl", 
            "givenName": "Thomas", 
            "id": "sg:person.07417426760.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e4t Karslruhe (TH), Institute for Process Control and Robotics, Engler-Bunte-Ring 8, 76131, Karlsruhe, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Universit\u00e4t Karslruhe (TH), Institute for Process Control and Robotics, Engler-Bunte-Ring 8, 76131, Karlsruhe, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "W\u00f6rn", 
            "givenName": "Heinz", 
            "id": "sg:person.0113215704.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0113215704.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crailsheim", 
            "givenName": "Karl", 
            "id": "sg:person.01366315645.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00265-003-0716-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007170649", 
              "https://doi.org/10.1007/s00265-003-0716-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11553090_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050711387", 
              "https://doi.org/10.1007/11553090_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69134-1_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048873250", 
              "https://doi.org/10.1007/978-3-540-69134-1_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019775685", 
              "https://doi.org/10.1038/nature02345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10458-008-9058-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010730236", 
              "https://doi.org/10.1007/s10458-008-9058-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00265-002-0454-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049787225", 
              "https://doi.org/10.1007/s00265-002-0454-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2008-00334-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000201118", 
              "https://doi.org/10.1140/epjb/e2008-00334-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01417910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045451177", 
              "https://doi.org/10.1007/bf01417910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00175101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005082071", 
              "https://doi.org/10.1007/bf00175101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00265-003-0664-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046477801", 
              "https://doi.org/10.1007/s00265-003-0664-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10514-007-9073-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046474988", 
              "https://doi.org/10.1007/s10514-007-9073-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04-28", 
        "datePublishedReg": "2010-04-28", 
        "description": "We investigate a simulated multi-agent system (MAS) that collectively decides to aggregate at an area of high utility. The agents\u2019 control algorithm is based on random agent\u2013agent encounters and is inspired by the aggregation behavior of honeybees. In this article, we define symmetry breaking, several symmetry breaking measures, and report the phenomenon of emergent symmetry breaking within our observed system. The ability of the MAS to successfully break the symmetry depends significantly on a local-neighborhood-based threshold of the agents\u2019 control algorithm that determines at which number of neighbors the agents stop. This dependency is analyzed and two macroscopic features are determined that significantly influence the symmetry breaking behavior. In addition, we investigate the connection between the ability of the MAS to break symmetries and the ability to stay flexible in a dynamic environment.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00521-010-0368-6", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3774578", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3772413", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3763551", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6187028", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6191056", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "multi-agent systems", 
          "simulated multi-agent system", 
          "control algorithm", 
          "number of neighbors", 
          "dynamic environment", 
          "high utility", 
          "algorithm", 
          "collective decision", 
          "observed system", 
          "neighbors", 
          "system", 
          "environment", 
          "dependency", 
          "decisions", 
          "features", 
          "ability", 
          "connection", 
          "utility", 
          "number", 
          "determine", 
          "behavior", 
          "article", 
          "threshold", 
          "area", 
          "measures", 
          "agents", 
          "analysis", 
          "addition", 
          "macroscopic features", 
          "encounters", 
          "phenomenon", 
          "honeybees", 
          "symmetry", 
          "aggregation behavior", 
          "symmetry breaking", 
          "breaking", 
          "emergent symmetry", 
          "symmetry breaking behavior", 
          "breaking behavior"
        ], 
        "name": "Analysis of emergent symmetry breaking in collective decision making", 
        "pagination": "207-218", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042510590"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-010-0368-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-010-0368-6", 
          "https://app.dimensions.ai/details/publication/pub.1042510590"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_515.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00521-010-0368-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0368-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0368-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0368-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0368-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      73 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-010-0368-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Na0fb087829614d7c933b08d73e667b2e
    4 schema:citation sg:pub.10.1007/11553090_18
    5 sg:pub.10.1007/978-3-540-69134-1_41
    6 sg:pub.10.1007/bf00175101
    7 sg:pub.10.1007/bf01417910
    8 sg:pub.10.1007/s00265-002-0454-6
    9 sg:pub.10.1007/s00265-003-0664-6
    10 sg:pub.10.1007/s00265-003-0716-y
    11 sg:pub.10.1007/s10458-008-9058-5
    12 sg:pub.10.1007/s10514-007-9073-4
    13 sg:pub.10.1038/nature02345
    14 sg:pub.10.1140/epjb/e2008-00334-3
    15 schema:datePublished 2010-04-28
    16 schema:datePublishedReg 2010-04-28
    17 schema:description We investigate a simulated multi-agent system (MAS) that collectively decides to aggregate at an area of high utility. The agents’ control algorithm is based on random agent–agent encounters and is inspired by the aggregation behavior of honeybees. In this article, we define symmetry breaking, several symmetry breaking measures, and report the phenomenon of emergent symmetry breaking within our observed system. The ability of the MAS to successfully break the symmetry depends significantly on a local-neighborhood-based threshold of the agents’ control algorithm that determines at which number of neighbors the agents stop. This dependency is analyzed and two macroscopic features are determined that significantly influence the symmetry breaking behavior. In addition, we investigate the connection between the ability of the MAS to break symmetries and the ability to stay flexible in a dynamic environment.
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N577e819c9500452083dd8d13a0faeea5
    21 N5adb94b3af96494b9473f70c0c03a89d
    22 sg:journal.1104357
    23 schema:keywords ability
    24 addition
    25 agents
    26 aggregation behavior
    27 algorithm
    28 analysis
    29 area
    30 article
    31 behavior
    32 breaking
    33 breaking behavior
    34 collective decision
    35 connection
    36 control algorithm
    37 decisions
    38 dependency
    39 determine
    40 dynamic environment
    41 emergent symmetry
    42 encounters
    43 environment
    44 features
    45 high utility
    46 honeybees
    47 macroscopic features
    48 measures
    49 multi-agent systems
    50 neighbors
    51 number
    52 number of neighbors
    53 observed system
    54 phenomenon
    55 simulated multi-agent system
    56 symmetry
    57 symmetry breaking
    58 symmetry breaking behavior
    59 system
    60 threshold
    61 utility
    62 schema:name Analysis of emergent symmetry breaking in collective decision making
    63 schema:pagination 207-218
    64 schema:productId N9dd8591c9ec34c5b9078ad8380a226e1
    65 Nd2bfc5721b314068833ba9141668a33e
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042510590
    67 https://doi.org/10.1007/s00521-010-0368-6
    68 schema:sdDatePublished 2022-12-01T06:28
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Nc97dd63f69f5478ba749111ed8a526e8
    71 schema:url https://doi.org/10.1007/s00521-010-0368-6
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N54fcda42f2934eea8a33fcceb11e1ad0 rdf:first sg:person.07417426760.84
    76 rdf:rest N69c5f41b457e4a548f6a2c94739dd744
    77 N577e819c9500452083dd8d13a0faeea5 schema:volumeNumber 21
    78 rdf:type schema:PublicationVolume
    79 N5adb94b3af96494b9473f70c0c03a89d schema:issueNumber 2
    80 rdf:type schema:PublicationIssue
    81 N682abf32720c4034b8384eb6a99651bf rdf:first sg:person.01366315645.25
    82 rdf:rest rdf:nil
    83 N69c5f41b457e4a548f6a2c94739dd744 rdf:first sg:person.0113215704.16
    84 rdf:rest N682abf32720c4034b8384eb6a99651bf
    85 N9dd8591c9ec34c5b9078ad8380a226e1 schema:name doi
    86 schema:value 10.1007/s00521-010-0368-6
    87 rdf:type schema:PropertyValue
    88 Na0fb087829614d7c933b08d73e667b2e rdf:first sg:person.01252067245.75
    89 rdf:rest N54fcda42f2934eea8a33fcceb11e1ad0
    90 Nc97dd63f69f5478ba749111ed8a526e8 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Nd2bfc5721b314068833ba9141668a33e schema:name dimensions_id
    93 schema:value pub.1042510590
    94 rdf:type schema:PropertyValue
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Artificial Intelligence and Image Processing
    100 rdf:type schema:DefinedTerm
    101 sg:grant.3763551 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0368-6
    102 rdf:type schema:MonetaryGrant
    103 sg:grant.3772413 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0368-6
    104 rdf:type schema:MonetaryGrant
    105 sg:grant.3774578 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0368-6
    106 rdf:type schema:MonetaryGrant
    107 sg:grant.6187028 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0368-6
    108 rdf:type schema:MonetaryGrant
    109 sg:grant.6191056 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0368-6
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1104357 schema:issn 0941-0643
    112 1433-3058
    113 schema:name Neural Computing and Applications
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.0113215704.16 schema:affiliation grid-institutes:None
    117 schema:familyName Wörn
    118 schema:givenName Heinz
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0113215704.16
    120 rdf:type schema:Person
    121 sg:person.01252067245.75 schema:affiliation grid-institutes:grid.5110.5
    122 schema:familyName Hamann
    123 schema:givenName Heiko
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252067245.75
    125 rdf:type schema:Person
    126 sg:person.01366315645.25 schema:affiliation grid-institutes:grid.5110.5
    127 schema:familyName Crailsheim
    128 schema:givenName Karl
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25
    130 rdf:type schema:Person
    131 sg:person.07417426760.84 schema:affiliation grid-institutes:grid.5110.5
    132 schema:familyName Schmickl
    133 schema:givenName Thomas
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84
    135 rdf:type schema:Person
    136 sg:pub.10.1007/11553090_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050711387
    137 https://doi.org/10.1007/11553090_18
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-540-69134-1_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048873250
    140 https://doi.org/10.1007/978-3-540-69134-1_41
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf00175101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005082071
    143 https://doi.org/10.1007/bf00175101
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf01417910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045451177
    146 https://doi.org/10.1007/bf01417910
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00265-002-0454-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049787225
    149 https://doi.org/10.1007/s00265-002-0454-6
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00265-003-0664-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046477801
    152 https://doi.org/10.1007/s00265-003-0664-6
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00265-003-0716-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007170649
    155 https://doi.org/10.1007/s00265-003-0716-y
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10458-008-9058-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010730236
    158 https://doi.org/10.1007/s10458-008-9058-5
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s10514-007-9073-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046474988
    161 https://doi.org/10.1007/s10514-007-9073-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nature02345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019775685
    164 https://doi.org/10.1038/nature02345
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1140/epjb/e2008-00334-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000201118
    167 https://doi.org/10.1140/epjb/e2008-00334-3
    168 rdf:type schema:CreativeWork
    169 grid-institutes:None schema:alternateName Universität Karslruhe (TH), Institute for Process Control and Robotics, Engler-Bunte-Ring 8, 76131, Karlsruhe, Germany
    170 schema:name Universität Karslruhe (TH), Institute for Process Control and Robotics, Engler-Bunte-Ring 8, 76131, Karlsruhe, Germany
    171 rdf:type schema:Organization
    172 grid-institutes:grid.5110.5 schema:alternateName Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, 8010, Graz, Austria
    173 schema:name Artificial Life Lab of the Department of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, 8010, Graz, Austria
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...