Swarm-intelligent foraging in honeybees: benefits and costs of task-partitioning and environmental fluctuations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04-08

AUTHORS

Thomas Schmickl, Ronald Thenius, Karl Crailsheim

ABSTRACT

For honeybee colonies, it is crucial to collect nectar in an efficient way. Empiric experiments showed that the process of decision making, which allows the colony to select the optimal nectar source, is based on individual decisions. These decisions are made by returning nectar foragers, which alter their dancing behaviours based on the nectar source’s quality and based on the experienced search time for a receiver bee. Nectar receivers, which represent a shared limited resource for foragers, can modulate the foraging decisions performed by the colony. We investigated the interplay between foragers and receivers by using a multi-agent simulation. Therefore, we implemented agents which are capable of a limited set of behaviours and which spend energy according to their behaviour. In simulation experiments, we tested colonies with various receiver-to-forager ratios and measured colony-level results like the emerging foraging patterns and the colony’s net honey gain. We show that the number of receivers prominently regulates the foraging workforce. All tested environmental fluctuations are predicted to cause energetic costs for the colony. Task-partitioning additionally influences the colony’s decision-making concerning the question whether or not the colony sticks to a nectar source after environmental fluctuations. More... »

PAGES

251-268

References to SciGraph publications

  • 1982-12. Adaptive significance of the age polyethism schedule in honeybee colonies in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 1998. Routing in telecommunications networks with ant-like agents in INTELLIGENT AGENTS FOR TELECOMMUNICATION APPLICATIONS
  • 2008-08-08. Get in touch: cooperative decision making based on robot-to-robot collisions in AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS
  • 2001-09. Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages in JOURNAL OF COMPARATIVE PHYSIOLOGY A
  • 2005. The “Dance or Work” Problem: Why Do not all Honeybees Dance with Maximum Intensity in MULTI-AGENT SYSTEMS AND APPLICATIONS IV
  • 1991-04. Collective decision-making in honey bees: how colonies choose among nectar sources in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2004. BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior in ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE
  • 2003-11. Multiple unloadings by nectar foragers in honey bees: a matter of information improvement or crop fullness? in INSECTES SOCIAUX
  • 2001-11. Pheromone Robotics in AUTONOMOUS ROBOTS
  • 1989-03. Social foraging in honey bees: how nectar foragers assess their colony's nutritional status in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2002-01. Reallocation of labor in honeybee colonies during heat stress: the relative roles of task switching and the activation of reserve labor in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2008-01-01. An Individual-Based Model of Task Selection in Honeybees in FROM ANIMALS TO ANIMATS 10
  • 2002-03-27. Self-organization in collective honeybee foraging: emergence of symmetry breaking, cross inhibition and equal harvest-rate distribution in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2006. Economic Optimisation in Honeybees: Adaptive Behaviour of a Superorganism in FROM ANIMALS TO ANIMATS 9
  • 2005. Aggregation Behaviour as a Source of Collective Decision in a Group of Cockroach-Like-Robots in ADVANCES IN ARTIFICIAL LIFE
  • 2005. Pheromone Robotics and the Logic of Virtual Pheromones in SWARM ROBOTICS
  • 2007-12-22. Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm in AUTONOMOUS ROBOTS
  • 1994-01. Honey bee foragers as sensory units of their colonies in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2004. Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS 2004, Brussels, Belgium, September 5-8, 2004. Proceedings in NONE
  • 1965. Tanzsprache und Orientierung der Bienen in NONE
  • 1985-05. Honeybees maximize efficiency by not filling their crop in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 1992-12. The tremble dance of the honey bee: message and meanings in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2003-02. A modelling framework for understanding social insect foraging in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 1998-11. Modelling collective foraging by means of individual behaviour rules in honey-bees in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00521-010-0357-9

    DOI

    http://dx.doi.org/10.1007/s00521-010-0357-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039203436


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Artificial Life Lab of the Department of Zoology, University of Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "Artificial Life Lab of the Department of Zoology, University of Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmickl", 
            "givenName": "Thomas", 
            "id": "sg:person.07417426760.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Artificial Life Lab of the Department of Zoology, University of Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "Artificial Life Lab of the Department of Zoology, University of Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thenius", 
            "givenName": "Ronald", 
            "id": "sg:person.01135755405.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135755405.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Artificial Life Lab of the Department of Zoology, University of Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "Artificial Life Lab of the Department of Zoology, University of Graz, Universit\u00e4tsplatz 2, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crailsheim", 
            "givenName": "Karl", 
            "id": "sg:person.01366315645.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00292101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039309427", 
              "https://doi.org/10.1007/bf00292101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b99492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034461735", 
              "https://doi.org/10.1007/b99492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-94916-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006196560", 
              "https://doi.org/10.1007/978-3-642-94916-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00265-001-0419-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020116173", 
              "https://doi.org/10.1007/s00265-001-0419-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11553090_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050711387", 
              "https://doi.org/10.1007/11553090_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11840541_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038251132", 
              "https://doi.org/10.1007/11840541_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00265-002-0549-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085152879", 
              "https://doi.org/10.1007/s00265-002-0549-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00265-002-0454-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049787225", 
              "https://doi.org/10.1007/s00265-002-0454-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012411712038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035287834", 
              "https://doi.org/10.1023/a:1012411712038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11559221_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001242558", 
              "https://doi.org/10.1007/11559221_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30552-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008382347", 
              "https://doi.org/10.1007/978-3-540-30552-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10514-007-9073-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046474988", 
              "https://doi.org/10.1007/s10514-007-9073-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10458-008-9058-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010730236", 
              "https://doi.org/10.1007/s10458-008-9058-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003590100226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023810809", 
              "https://doi.org/10.1007/s003590100226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00170604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003746222", 
              "https://doi.org/10.1007/bf00170604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28646-2_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018609805", 
              "https://doi.org/10.1007/978-3-540-28646-2_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69134-1_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017568288", 
              "https://doi.org/10.1007/978-3-540-69134-1_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0053944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041909525", 
              "https://doi.org/10.1007/bfb0053944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00299430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034548033", 
              "https://doi.org/10.1007/bf00299430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00299306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047701691", 
              "https://doi.org/10.1007/bf00299306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00175458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042878805", 
              "https://doi.org/10.1007/bf00175458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002650050522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026156307", 
              "https://doi.org/10.1007/s002650050522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00175101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005082071", 
              "https://doi.org/10.1007/bf00175101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00040-003-0682-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012519550", 
              "https://doi.org/10.1007/s00040-003-0682-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04-08", 
        "datePublishedReg": "2010-04-08", 
        "description": "For honeybee colonies, it is crucial to collect nectar in an efficient way. Empiric experiments showed that the process of decision making, which allows the colony to select the optimal nectar source, is based on individual decisions. These decisions are made by returning nectar foragers, which alter their dancing behaviours based on the nectar source\u2019s quality and based on the experienced search time for a receiver bee. Nectar receivers, which represent a shared limited resource for foragers, can modulate the foraging decisions performed by the colony. We investigated the interplay between foragers and receivers by using a multi-agent simulation. Therefore, we implemented agents which are capable of a limited set of behaviours and which spend energy according to their behaviour. In simulation experiments, we tested colonies with various receiver-to-forager ratios and measured colony-level results like the emerging foraging patterns and the colony\u2019s net honey gain. We show that the number of receivers prominently regulates the foraging workforce. All tested environmental fluctuations are predicted to cause energetic costs for the colony. Task-partitioning additionally influences the colony\u2019s decision-making concerning the question whether or not the colony sticks to a nectar source after environmental fluctuations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00521-010-0357-9", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6187028", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3774578", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3772413", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6191056", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3763551", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1104357", 
            "issn": [
              "0941-0643", 
              "1433-3058"
            ], 
            "name": "Neural Computing and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "multi-agent simulation", 
          "search time", 
          "empiric experiments", 
          "simulation experiments", 
          "number of receivers", 
          "efficient way", 
          "limited resources", 
          "decision making", 
          "limited set", 
          "source quality", 
          "dancing behavior", 
          "decisions", 
          "nectar receivers", 
          "cost", 
          "individual decisions", 
          "receiver", 
          "set", 
          "quality", 
          "resources", 
          "experiments", 
          "making", 
          "receiver bees", 
          "simulations", 
          "way", 
          "benefits", 
          "number", 
          "behavior", 
          "process", 
          "source", 
          "time", 
          "nectar sources", 
          "results", 
          "gain", 
          "agents", 
          "patterns", 
          "questions", 
          "stick", 
          "workforce", 
          "honeybee colonies", 
          "bees", 
          "foraging", 
          "colonies", 
          "energy", 
          "interplay", 
          "fluctuations", 
          "ratio", 
          "honeybees", 
          "foraging patterns", 
          "environmental fluctuations", 
          "foraging decisions", 
          "foragers", 
          "energetic cost", 
          "nectar foragers"
        ], 
        "name": "Swarm-intelligent foraging in honeybees: benefits and costs of task-partitioning and environmental fluctuations", 
        "pagination": "251-268", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039203436"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00521-010-0357-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00521-010-0357-9", 
          "https://app.dimensions.ai/details/publication/pub.1039203436"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00521-010-0357-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0357-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0357-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0357-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-010-0357-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    230 TRIPLES      21 PREDICATES      101 URIs      69 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00521-010-0357-9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N56fea32f0935421e8efe7eaf7536420e
    4 schema:citation sg:pub.10.1007/11553090_18
    5 sg:pub.10.1007/11559221_25
    6 sg:pub.10.1007/11840541_60
    7 sg:pub.10.1007/978-3-540-28646-2_8
    8 sg:pub.10.1007/978-3-540-30552-1_5
    9 sg:pub.10.1007/978-3-540-69134-1_38
    10 sg:pub.10.1007/978-3-642-94916-6
    11 sg:pub.10.1007/b99492
    12 sg:pub.10.1007/bf00170604
    13 sg:pub.10.1007/bf00175101
    14 sg:pub.10.1007/bf00175458
    15 sg:pub.10.1007/bf00292101
    16 sg:pub.10.1007/bf00299306
    17 sg:pub.10.1007/bf00299430
    18 sg:pub.10.1007/bfb0053944
    19 sg:pub.10.1007/s00040-003-0682-4
    20 sg:pub.10.1007/s00265-001-0419-1
    21 sg:pub.10.1007/s00265-002-0454-6
    22 sg:pub.10.1007/s00265-002-0549-0
    23 sg:pub.10.1007/s002650050522
    24 sg:pub.10.1007/s003590100226
    25 sg:pub.10.1007/s10458-008-9058-5
    26 sg:pub.10.1007/s10514-007-9073-4
    27 sg:pub.10.1023/a:1012411712038
    28 schema:datePublished 2010-04-08
    29 schema:datePublishedReg 2010-04-08
    30 schema:description For honeybee colonies, it is crucial to collect nectar in an efficient way. Empiric experiments showed that the process of decision making, which allows the colony to select the optimal nectar source, is based on individual decisions. These decisions are made by returning nectar foragers, which alter their dancing behaviours based on the nectar source’s quality and based on the experienced search time for a receiver bee. Nectar receivers, which represent a shared limited resource for foragers, can modulate the foraging decisions performed by the colony. We investigated the interplay between foragers and receivers by using a multi-agent simulation. Therefore, we implemented agents which are capable of a limited set of behaviours and which spend energy according to their behaviour. In simulation experiments, we tested colonies with various receiver-to-forager ratios and measured colony-level results like the emerging foraging patterns and the colony’s net honey gain. We show that the number of receivers prominently regulates the foraging workforce. All tested environmental fluctuations are predicted to cause energetic costs for the colony. Task-partitioning additionally influences the colony’s decision-making concerning the question whether or not the colony sticks to a nectar source after environmental fluctuations.
    31 schema:genre article
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N8b695a2e8dfe465bb2f19c98cf93bada
    34 N9793dcecb3b84d7bbe87782a3917caaa
    35 sg:journal.1104357
    36 schema:keywords agents
    37 bees
    38 behavior
    39 benefits
    40 colonies
    41 cost
    42 dancing behavior
    43 decision making
    44 decisions
    45 efficient way
    46 empiric experiments
    47 energetic cost
    48 energy
    49 environmental fluctuations
    50 experiments
    51 fluctuations
    52 foragers
    53 foraging
    54 foraging decisions
    55 foraging patterns
    56 gain
    57 honeybee colonies
    58 honeybees
    59 individual decisions
    60 interplay
    61 limited resources
    62 limited set
    63 making
    64 multi-agent simulation
    65 nectar foragers
    66 nectar receivers
    67 nectar sources
    68 number
    69 number of receivers
    70 patterns
    71 process
    72 quality
    73 questions
    74 ratio
    75 receiver
    76 receiver bees
    77 resources
    78 results
    79 search time
    80 set
    81 simulation experiments
    82 simulations
    83 source
    84 source quality
    85 stick
    86 time
    87 way
    88 workforce
    89 schema:name Swarm-intelligent foraging in honeybees: benefits and costs of task-partitioning and environmental fluctuations
    90 schema:pagination 251-268
    91 schema:productId N5769ec0ca92345289e401954873250a7
    92 Na2c57462fcf94106a68c9a01d2db2ea6
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039203436
    94 https://doi.org/10.1007/s00521-010-0357-9
    95 schema:sdDatePublished 2022-12-01T06:28
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nb03ccdd8c26246988c9fd956d31a6406
    98 schema:url https://doi.org/10.1007/s00521-010-0357-9
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N56fea32f0935421e8efe7eaf7536420e rdf:first sg:person.07417426760.84
    103 rdf:rest Na37d7c2910154bfca1b906300e0f501e
    104 N5769ec0ca92345289e401954873250a7 schema:name doi
    105 schema:value 10.1007/s00521-010-0357-9
    106 rdf:type schema:PropertyValue
    107 N8b695a2e8dfe465bb2f19c98cf93bada schema:volumeNumber 21
    108 rdf:type schema:PublicationVolume
    109 N9793dcecb3b84d7bbe87782a3917caaa schema:issueNumber 2
    110 rdf:type schema:PublicationIssue
    111 N990f972ad4ff4d16bfff7b9391c30768 rdf:first sg:person.01366315645.25
    112 rdf:rest rdf:nil
    113 Na2c57462fcf94106a68c9a01d2db2ea6 schema:name dimensions_id
    114 schema:value pub.1039203436
    115 rdf:type schema:PropertyValue
    116 Na37d7c2910154bfca1b906300e0f501e rdf:first sg:person.01135755405.01
    117 rdf:rest N990f972ad4ff4d16bfff7b9391c30768
    118 Nb03ccdd8c26246988c9fd956d31a6406 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Information and Computing Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Artificial Intelligence and Image Processing
    125 rdf:type schema:DefinedTerm
    126 sg:grant.3763551 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0357-9
    127 rdf:type schema:MonetaryGrant
    128 sg:grant.3772413 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0357-9
    129 rdf:type schema:MonetaryGrant
    130 sg:grant.3774578 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0357-9
    131 rdf:type schema:MonetaryGrant
    132 sg:grant.6187028 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0357-9
    133 rdf:type schema:MonetaryGrant
    134 sg:grant.6191056 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-010-0357-9
    135 rdf:type schema:MonetaryGrant
    136 sg:journal.1104357 schema:issn 0941-0643
    137 1433-3058
    138 schema:name Neural Computing and Applications
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.01135755405.01 schema:affiliation grid-institutes:grid.5110.5
    142 schema:familyName Thenius
    143 schema:givenName Ronald
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135755405.01
    145 rdf:type schema:Person
    146 sg:person.01366315645.25 schema:affiliation grid-institutes:grid.5110.5
    147 schema:familyName Crailsheim
    148 schema:givenName Karl
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25
    150 rdf:type schema:Person
    151 sg:person.07417426760.84 schema:affiliation grid-institutes:grid.5110.5
    152 schema:familyName Schmickl
    153 schema:givenName Thomas
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84
    155 rdf:type schema:Person
    156 sg:pub.10.1007/11553090_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050711387
    157 https://doi.org/10.1007/11553090_18
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/11559221_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001242558
    160 https://doi.org/10.1007/11559221_25
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/11840541_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038251132
    163 https://doi.org/10.1007/11840541_60
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/978-3-540-28646-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018609805
    166 https://doi.org/10.1007/978-3-540-28646-2_8
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/978-3-540-30552-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008382347
    169 https://doi.org/10.1007/978-3-540-30552-1_5
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/978-3-540-69134-1_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017568288
    172 https://doi.org/10.1007/978-3-540-69134-1_38
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/978-3-642-94916-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006196560
    175 https://doi.org/10.1007/978-3-642-94916-6
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/b99492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034461735
    178 https://doi.org/10.1007/b99492
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/bf00170604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003746222
    181 https://doi.org/10.1007/bf00170604
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf00175101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005082071
    184 https://doi.org/10.1007/bf00175101
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/bf00175458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042878805
    187 https://doi.org/10.1007/bf00175458
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf00292101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039309427
    190 https://doi.org/10.1007/bf00292101
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf00299306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047701691
    193 https://doi.org/10.1007/bf00299306
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bf00299430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034548033
    196 https://doi.org/10.1007/bf00299430
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bfb0053944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041909525
    199 https://doi.org/10.1007/bfb0053944
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00040-003-0682-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012519550
    202 https://doi.org/10.1007/s00040-003-0682-4
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00265-001-0419-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020116173
    205 https://doi.org/10.1007/s00265-001-0419-1
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00265-002-0454-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049787225
    208 https://doi.org/10.1007/s00265-002-0454-6
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s00265-002-0549-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085152879
    211 https://doi.org/10.1007/s00265-002-0549-0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s002650050522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026156307
    214 https://doi.org/10.1007/s002650050522
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s003590100226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023810809
    217 https://doi.org/10.1007/s003590100226
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s10458-008-9058-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010730236
    220 https://doi.org/10.1007/s10458-008-9058-5
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s10514-007-9073-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046474988
    223 https://doi.org/10.1007/s10514-007-9073-4
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1012411712038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035287834
    226 https://doi.org/10.1023/a:1012411712038
    227 rdf:type schema:CreativeWork
    228 grid-institutes:grid.5110.5 schema:alternateName Artificial Life Lab of the Department of Zoology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
    229 schema:name Artificial Life Lab of the Department of Zoology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
    230 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...