Combining nearest neighbor data description and structural risk minimization for one-class classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02

AUTHORS

George G. Cabral, Adriano L. I. Oliveira, Carlos B. G. Cahú

ABSTRACT

One-class classification is an important problem with applications in several different areas such as novelty detection, anomaly detection, outlier detection and machine monitoring. In this paper, we propose two novel methods for one-class classification, referred to as NNDDSRM and kNNDDSRM. The methods are based on the principle of structural risk minimization and the nearest neighbor data description (NNDD) one-class classifier. Experiments carried out using both artificial and real-world datasets show that the proposed methods are able to significantly reduce the number of stored prototypes in comparison to NNDD. The experimental results also show that the proposed methods outperformed NNDD—in terms of the area under the receiver operating characteristic (ROC) curve—on four of the five datasets considered in the experiments and had a similar performance on the remaining one. More... »

PAGES

175-183

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-007-0169-8

DOI

http://dx.doi.org/10.1007/s00521-007-0169-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005974759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Computing Systems, Polytechnic School of Engineering, Pernambuco State University, Rua Benfica, 455, Madalena, 50750-410, Recife, PE, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cabral", 
        "givenName": "George G.", 
        "id": "sg:person.014742323517.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014742323517.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computing Systems, Polytechnic School of Engineering, Pernambuco State University, Rua Benfica, 455, Madalena, 50750-410, Recife, PE, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliveira", 
        "givenName": "Adriano L. I.", 
        "id": "sg:person.015377064421.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377064421.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computing Systems, Polytechnic School of Engineering, Pernambuco State University, Rua Benfica, 455, Madalena, 50750-410, Recife, PE, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cah\u00fa", 
        "givenName": "Carlos B. G.", 
        "id": "sg:person.015025370723.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015025370723.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2004.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014203315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2003.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020612847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2003.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020612847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2006.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030412085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00093-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034429356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00093-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034429356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2004.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037148125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2003.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051345914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2003.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051345914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20057296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056795829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2004.1269665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2002.804315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2003.1223670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095064195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2004.1380945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095558714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-02", 
    "datePublishedReg": "2009-02-01", 
    "description": "One-class classification is an important problem with applications in several different areas such as novelty detection, anomaly detection, outlier detection and machine monitoring. In this paper, we propose two novel methods for one-class classification, referred to as NNDDSRM and kNNDDSRM. The methods are based on the principle of structural risk minimization and the nearest neighbor data description (NNDD) one-class classifier. Experiments carried out using both artificial and real-world datasets show that the proposed methods are able to significantly reduce the number of stored prototypes in comparison to NNDD. The experimental results also show that the proposed methods outperformed NNDD\u2014in terms of the area under the receiver operating characteristic (ROC) curve\u2014on four of the five datasets considered in the experiments and had a similar performance on the remaining one.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-007-0169-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Combining nearest neighbor data description and structural risk minimization for one-class classification", 
    "pagination": "175-183", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c75c9cd0136aa7ac859d96c42925f2410522c7d156c81e7d71f1f40c4ab9a6b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-007-0169-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005974759"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-007-0169-8", 
      "https://app.dimensions.ai/details/publication/pub.1005974759"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-007-0169-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0169-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0169-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0169-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0169-8'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-007-0169-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8fbac18ee50240c1b44070fc6e948562
4 schema:citation https://doi.org/10.1016/j.neucom.2004.11.027
5 https://doi.org/10.1016/j.neucom.2006.05.008
6 https://doi.org/10.1016/j.patrec.2005.10.010
7 https://doi.org/10.1016/j.robot.2004.10.006
8 https://doi.org/10.1016/j.sigpro.2003.07.018
9 https://doi.org/10.1016/j.sigpro.2003.07.019
10 https://doi.org/10.1016/s0167-8655(03)00093-x
11 https://doi.org/10.1049/el:20057296
12 https://doi.org/10.1109/ijcnn.2003.1223670
13 https://doi.org/10.1109/ijcnn.2004.1380945
14 https://doi.org/10.1109/tkde.2004.1269665
15 https://doi.org/10.1109/tnn.2002.804315
16 schema:datePublished 2009-02
17 schema:datePublishedReg 2009-02-01
18 schema:description One-class classification is an important problem with applications in several different areas such as novelty detection, anomaly detection, outlier detection and machine monitoring. In this paper, we propose two novel methods for one-class classification, referred to as NNDDSRM and kNNDDSRM. The methods are based on the principle of structural risk minimization and the nearest neighbor data description (NNDD) one-class classifier. Experiments carried out using both artificial and real-world datasets show that the proposed methods are able to significantly reduce the number of stored prototypes in comparison to NNDD. The experimental results also show that the proposed methods outperformed NNDD—in terms of the area under the receiver operating characteristic (ROC) curve—on four of the five datasets considered in the experiments and had a similar performance on the remaining one.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N4892b9d076c648109eb41a01244ff092
23 N4f560f88b387491a9f77cdcd74de41c1
24 sg:journal.1104357
25 schema:name Combining nearest neighbor data description and structural risk minimization for one-class classification
26 schema:pagination 175-183
27 schema:productId N1f5de6ed5f3f4ef5bf8a3b0ef838a7e6
28 N28acee059d294ea7b3ea4495affa8cb4
29 N35fb1bf89efe42ceb2ac2c93bf37fe36
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005974759
31 https://doi.org/10.1007/s00521-007-0169-8
32 schema:sdDatePublished 2019-04-11T14:29
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N6f2e28aad43b403a9ed1d55a5d8815ba
35 schema:url http://link.springer.com/10.1007%2Fs00521-007-0169-8
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1f5de6ed5f3f4ef5bf8a3b0ef838a7e6 schema:name dimensions_id
40 schema:value pub.1005974759
41 rdf:type schema:PropertyValue
42 N21f66f3310b147c4b83b42d7007fd56a schema:name Department of Computing Systems, Polytechnic School of Engineering, Pernambuco State University, Rua Benfica, 455, Madalena, 50750-410, Recife, PE, Brazil
43 rdf:type schema:Organization
44 N28acee059d294ea7b3ea4495affa8cb4 schema:name doi
45 schema:value 10.1007/s00521-007-0169-8
46 rdf:type schema:PropertyValue
47 N35fb1bf89efe42ceb2ac2c93bf37fe36 schema:name readcube_id
48 schema:value 1c75c9cd0136aa7ac859d96c42925f2410522c7d156c81e7d71f1f40c4ab9a6b
49 rdf:type schema:PropertyValue
50 N4892b9d076c648109eb41a01244ff092 schema:issueNumber 2
51 rdf:type schema:PublicationIssue
52 N4f560f88b387491a9f77cdcd74de41c1 schema:volumeNumber 18
53 rdf:type schema:PublicationVolume
54 N60ef0f3d3dd3404698f788b47522d6ce schema:name Department of Computing Systems, Polytechnic School of Engineering, Pernambuco State University, Rua Benfica, 455, Madalena, 50750-410, Recife, PE, Brazil
55 rdf:type schema:Organization
56 N6f2e28aad43b403a9ed1d55a5d8815ba schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N8fbac18ee50240c1b44070fc6e948562 rdf:first sg:person.014742323517.16
59 rdf:rest N9c1fdace623d430eac259dd699097f89
60 N9c1fdace623d430eac259dd699097f89 rdf:first sg:person.015377064421.35
61 rdf:rest Nf8322dee2b8d447b92a971f3669787d5
62 Nf76079d936534c6daa5e06ba2dbd2829 schema:name Department of Computing Systems, Polytechnic School of Engineering, Pernambuco State University, Rua Benfica, 455, Madalena, 50750-410, Recife, PE, Brazil
63 rdf:type schema:Organization
64 Nf8322dee2b8d447b92a971f3669787d5 rdf:first sg:person.015025370723.00
65 rdf:rest rdf:nil
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:journal.1104357 schema:issn 0941-0643
73 1433-3058
74 schema:name Neural Computing and Applications
75 rdf:type schema:Periodical
76 sg:person.014742323517.16 schema:affiliation N60ef0f3d3dd3404698f788b47522d6ce
77 schema:familyName Cabral
78 schema:givenName George G.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014742323517.16
80 rdf:type schema:Person
81 sg:person.015025370723.00 schema:affiliation N21f66f3310b147c4b83b42d7007fd56a
82 schema:familyName Cahú
83 schema:givenName Carlos B. G.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015025370723.00
85 rdf:type schema:Person
86 sg:person.015377064421.35 schema:affiliation Nf76079d936534c6daa5e06ba2dbd2829
87 schema:familyName Oliveira
88 schema:givenName Adriano L. I.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377064421.35
90 rdf:type schema:Person
91 https://doi.org/10.1016/j.neucom.2004.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037148125
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.neucom.2006.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030412085
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.robot.2004.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014203315
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.sigpro.2003.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051345914
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.sigpro.2003.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020612847
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0167-8655(03)00093-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034429356
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1049/el:20057296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056795829
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/ijcnn.2003.1223670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095064195
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/ijcnn.2004.1380945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095558714
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tkde.2004.1269665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661266
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tnn.2002.804315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716504
114 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...