Enclosing machine learning: concepts and algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

Xun-Kai Wei, Ying-Hong Li, Yu-Fei Li, Dong-Fang Zhang

ABSTRACT

A novel machine learning paradigm, i.e., enclosing machine learning based on regular geometric shapes was proposed. First, it adopted regular minimum volume enclosing and bounding geometric shapes (sphere, ellipsoid, box) or their unions and so on to obtain one class description model. Second, Data description, two class classification, learning algorithms based on the one class description model were presented. The most obvious feature was that enclosing machine learning emphasized one class description and learning. To illustrate the concepts and algorithms, a minimum volume enclosing ellipsoid (MVEE) case for enclosing machine learning was then investigated in detail. Implementation algorithms for enclosing machine learning based on MVEE were presented. Subsequently, we validate the performances of MVEE learners using real world datasets. For novelty detection, a benchmark ball bearing dataset is adopted. For pattern classification, a benchmark iris dataset is investigated. The performance results show that our proposed method is comparable even better than Support Vector Machines (SVMs) in the datasets studied. More... »

PAGES

237-243

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-007-0113-y

DOI

http://dx.doi.org/10.1007/s00521-007-0113-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040289748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Air Force Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.440645.7", 
          "name": [
            "School of Engineering, Air Force Engineering University, 710038, Xi\u2019an, Shaanxi Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Xun-Kai", 
        "id": "sg:person.010117003327.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010117003327.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Force Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.440645.7", 
          "name": [
            "School of Engineering, Air Force Engineering University, 710038, Xi\u2019an, Shaanxi Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ying-Hong", 
        "id": "sg:person.013751672363.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013751672363.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Force Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.440645.7", 
          "name": [
            "School of Engineering, Air Force Engineering University, 710038, Xi\u2019an, Shaanxi Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yu-Fei", 
        "id": "sg:person.012737255321.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737255321.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Force Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.440645.7", 
          "name": [
            "School of Engineering, Air Force Engineering University, 710038, Xi\u2019an, Shaanxi Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Dong-Fang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-36169-3_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020746845", 
          "https://doi.org/10.1007/3-540-36169-3_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36169-3_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020746845", 
          "https://doi.org/10.1007/3-540-36169-3_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479896303430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1040.0115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064725592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "A novel machine learning paradigm, i.e., enclosing machine learning based on regular geometric shapes was proposed. First, it adopted regular minimum volume enclosing and bounding geometric shapes (sphere, ellipsoid, box) or their unions and so on to obtain one class description model. Second, Data description, two class classification, learning algorithms based on the one class description model were presented. The most obvious feature was that enclosing machine learning emphasized one class description and learning. To illustrate the concepts and algorithms, a minimum volume enclosing ellipsoid (MVEE) case for enclosing machine learning was then investigated in detail. Implementation algorithms for enclosing machine learning based on MVEE were presented. Subsequently, we validate the performances of MVEE learners using real world datasets. For novelty detection, a benchmark ball bearing dataset is adopted. For pattern classification, a benchmark iris dataset is investigated. The performance results show that our proposed method is comparable even better than Support Vector Machines (SVMs) in the datasets studied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-007-0113-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4977163", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Enclosing machine learning: concepts and algorithms", 
    "pagination": "237-243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bfec6279f79eac36e99b2beaf9f47e83da6882038456144527ce01cf1254bc66"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-007-0113-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040289748"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-007-0113-y", 
      "https://app.dimensions.ai/details/publication/pub.1040289748"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13073_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-007-0113-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0113-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0113-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0113-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-007-0113-y'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-007-0113-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9631eaa3cef0430597f3d2507ab6b27f
4 schema:citation sg:pub.10.1007/3-540-36169-3_4
5 https://doi.org/10.1137/s0895479896303430
6 https://doi.org/10.1287/opre.1040.0115
7 schema:datePublished 2008-06
8 schema:datePublishedReg 2008-06-01
9 schema:description A novel machine learning paradigm, i.e., enclosing machine learning based on regular geometric shapes was proposed. First, it adopted regular minimum volume enclosing and bounding geometric shapes (sphere, ellipsoid, box) or their unions and so on to obtain one class description model. Second, Data description, two class classification, learning algorithms based on the one class description model were presented. The most obvious feature was that enclosing machine learning emphasized one class description and learning. To illustrate the concepts and algorithms, a minimum volume enclosing ellipsoid (MVEE) case for enclosing machine learning was then investigated in detail. Implementation algorithms for enclosing machine learning based on MVEE were presented. Subsequently, we validate the performances of MVEE learners using real world datasets. For novelty detection, a benchmark ball bearing dataset is adopted. For pattern classification, a benchmark iris dataset is investigated. The performance results show that our proposed method is comparable even better than Support Vector Machines (SVMs) in the datasets studied.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N403aaf09c6e649bfbc447346119f74b0
14 Nd55aa6a1ed6241318bc05c71040d00f3
15 sg:journal.1104357
16 schema:name Enclosing machine learning: concepts and algorithms
17 schema:pagination 237-243
18 schema:productId N28881b26252c4020a3dcf9f77082434b
19 N2d36903570e8434b981617662fc25be3
20 Nc5261a4e5da3432eb074fee7db499000
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040289748
22 https://doi.org/10.1007/s00521-007-0113-y
23 schema:sdDatePublished 2019-04-11T14:27
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Nd252d51205c44badb15dbbb51fbb5249
26 schema:url http://link.springer.com/10.1007%2Fs00521-007-0113-y
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N09edd52fbe1046a4b21bc2586b7e310f schema:affiliation https://www.grid.ac/institutes/grid.440645.7
31 schema:familyName Zhang
32 schema:givenName Dong-Fang
33 rdf:type schema:Person
34 N163257b02ab14bcc86d8ca696c7e8dc3 rdf:first sg:person.013751672363.47
35 rdf:rest Ncff6cee6877445679e38b06c9e1bafc6
36 N28881b26252c4020a3dcf9f77082434b schema:name readcube_id
37 schema:value bfec6279f79eac36e99b2beaf9f47e83da6882038456144527ce01cf1254bc66
38 rdf:type schema:PropertyValue
39 N2d36903570e8434b981617662fc25be3 schema:name dimensions_id
40 schema:value pub.1040289748
41 rdf:type schema:PropertyValue
42 N403aaf09c6e649bfbc447346119f74b0 schema:volumeNumber 17
43 rdf:type schema:PublicationVolume
44 N6957a3da60224dc6be2347ffbec545f3 rdf:first N09edd52fbe1046a4b21bc2586b7e310f
45 rdf:rest rdf:nil
46 N9631eaa3cef0430597f3d2507ab6b27f rdf:first sg:person.010117003327.91
47 rdf:rest N163257b02ab14bcc86d8ca696c7e8dc3
48 Nc5261a4e5da3432eb074fee7db499000 schema:name doi
49 schema:value 10.1007/s00521-007-0113-y
50 rdf:type schema:PropertyValue
51 Ncff6cee6877445679e38b06c9e1bafc6 rdf:first sg:person.012737255321.78
52 rdf:rest N6957a3da60224dc6be2347ffbec545f3
53 Nd252d51205c44badb15dbbb51fbb5249 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nd55aa6a1ed6241318bc05c71040d00f3 schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
58 schema:name Information and Computing Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
61 schema:name Artificial Intelligence and Image Processing
62 rdf:type schema:DefinedTerm
63 sg:grant.4977163 http://pending.schema.org/fundedItem sg:pub.10.1007/s00521-007-0113-y
64 rdf:type schema:MonetaryGrant
65 sg:journal.1104357 schema:issn 0941-0643
66 1433-3058
67 schema:name Neural Computing and Applications
68 rdf:type schema:Periodical
69 sg:person.010117003327.91 schema:affiliation https://www.grid.ac/institutes/grid.440645.7
70 schema:familyName Wei
71 schema:givenName Xun-Kai
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010117003327.91
73 rdf:type schema:Person
74 sg:person.012737255321.78 schema:affiliation https://www.grid.ac/institutes/grid.440645.7
75 schema:familyName Li
76 schema:givenName Yu-Fei
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737255321.78
78 rdf:type schema:Person
79 sg:person.013751672363.47 schema:affiliation https://www.grid.ac/institutes/grid.440645.7
80 schema:familyName Li
81 schema:givenName Ying-Hong
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013751672363.47
83 rdf:type schema:Person
84 sg:pub.10.1007/3-540-36169-3_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020746845
85 https://doi.org/10.1007/3-540-36169-3_4
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1137/s0895479896303430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882257
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1287/opre.1040.0115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064725592
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.440645.7 schema:alternateName Air Force Engineering University
92 schema:name School of Engineering, Air Force Engineering University, 710038, Xi’an, Shaanxi Province, China
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...