Prediction of the response under impact of steel armours using a multilayer perceptron View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-02

AUTHORS

A. García-Crespo, B. Ruiz-Mezcua, D. Fernández-Fdz, R. Zaera

ABSTRACT

This article puts forward the results obtained when using a neural network as an alternative to classical methods (simulation and experimental testing) in the prediction of the behaviour of steel armours against high-speed impacts. In a first phase, a number of impact cases are randomly generated, varying the values of the parameters which define the impact problem (radius, length and velocity of the projectile; thickness of the protection). After simulation of each case using a finite element code, the above-mentioned parameters and the results of the simulation (residual velocity and residual mass of the projectile) are used as input and output data to train and validate a neural network. In addition, the number of training cases needed to arrive at a given predictive error is studied. The results are satisfactory, this alternative providing a highly recommended option for armour design tasks, due to its simplicity of handling, low computational cost and efficiency. More... »

PAGES

147-154

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00521-006-0050-1

DOI

http://dx.doi.org/10.1007/s00521-006-0050-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041919704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Computer Science Department, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Legan\u00e9s, Madrid, Spain", 
            "Research Institute \u201cPedro Juan de Lastanosa\u201d, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Crespo", 
        "givenName": "A.", 
        "id": "sg:person.011537037147.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Computer Science Department, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Legan\u00e9s, Madrid, Spain", 
            "Research Institute \u201cPedro Juan de Lastanosa\u201d, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruiz-Mezcua", 
        "givenName": "B.", 
        "id": "sg:person.015556313103.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Fdz", 
        "givenName": "D.", 
        "id": "sg:person.012251430245.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012251430245.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Legan\u00e9s, Madrid, Spain", 
            "Research Institute \u201cPedro Juan de Lastanosa\u201d, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaera", 
        "givenName": "R.", 
        "id": "sg:person.011430775361.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011430775361.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0045-7949(01)00083-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012415514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(87)90029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018440657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-743x(97)00035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021309892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025940886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025940886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0263-8223(03)00038-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034519332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0263-8223(03)00038-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034519332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2003.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042951002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046217549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046217549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.81.10.3088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049596495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052287877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052287877"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-02", 
    "datePublishedReg": "2007-02-01", 
    "description": "This article puts forward the results obtained when using a neural network as an alternative to classical methods (simulation and experimental testing) in the prediction of the behaviour of steel armours against high-speed impacts. In a first phase, a number of impact cases are randomly generated, varying the values of the parameters which define the impact problem (radius, length and velocity of the projectile; thickness of the protection). After simulation of each case using a finite element code, the above-mentioned parameters and the results of the simulation (residual velocity and residual mass of the projectile) are used as input and output data to train and validate a neural network. In addition, the number of training cases needed to arrive at a given predictive error is studied. The results are satisfactory, this alternative providing a highly recommended option for armour design tasks, due to its simplicity of handling, low computational cost and efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00521-006-0050-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Prediction of the response under impact of steel armours using a multilayer perceptron", 
    "pagination": "147-154", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c7aff0c2e08f9af8dbc88372e822e84bdd2e00bdb77a04418e8909f93d996807"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00521-006-0050-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041919704"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00521-006-0050-1", 
      "https://app.dimensions.ai/details/publication/pub.1041919704"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71692_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00521-006-0050-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00521-006-0050-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00521-006-0050-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00521-006-0050-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00521-006-0050-1'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00521-006-0050-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0cdb78fb064543df88c51a3ab6517776
4 schema:citation https://doi.org/10.1016/0020-7225(83)90105-2
5 https://doi.org/10.1016/0020-7683(74)90050-x
6 https://doi.org/10.1016/0734-743x(87)90029-7
7 https://doi.org/10.1016/j.engfracmech.2003.12.004
8 https://doi.org/10.1016/s0045-7825(02)00221-9
9 https://doi.org/10.1016/s0045-7949(01)00083-9
10 https://doi.org/10.1016/s0263-8223(03)00038-2
11 https://doi.org/10.1016/s0734-743x(97)00035-3
12 https://doi.org/10.1073/pnas.81.10.3088
13 schema:datePublished 2007-02
14 schema:datePublishedReg 2007-02-01
15 schema:description This article puts forward the results obtained when using a neural network as an alternative to classical methods (simulation and experimental testing) in the prediction of the behaviour of steel armours against high-speed impacts. In a first phase, a number of impact cases are randomly generated, varying the values of the parameters which define the impact problem (radius, length and velocity of the projectile; thickness of the protection). After simulation of each case using a finite element code, the above-mentioned parameters and the results of the simulation (residual velocity and residual mass of the projectile) are used as input and output data to train and validate a neural network. In addition, the number of training cases needed to arrive at a given predictive error is studied. The results are satisfactory, this alternative providing a highly recommended option for armour design tasks, due to its simplicity of handling, low computational cost and efficiency.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N2128688c61a74d0fbe87de100d042048
20 Nabf179f2bbe846be8178a254a9eacae8
21 sg:journal.1104357
22 schema:name Prediction of the response under impact of steel armours using a multilayer perceptron
23 schema:pagination 147-154
24 schema:productId N8c9c85e4438241588f0c5321ed769538
25 Nad9b77bf733e4deea781b8dda5a1f869
26 Ndd2cae6e616f4509ae0072c421be7bda
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919704
28 https://doi.org/10.1007/s00521-006-0050-1
29 schema:sdDatePublished 2019-04-11T12:59
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nd0ece38fffeb4cdf9b19f1655507301c
32 schema:url http://link.springer.com/10.1007%2Fs00521-006-0050-1
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0cdb78fb064543df88c51a3ab6517776 rdf:first sg:person.011537037147.86
37 rdf:rest N6095c9286616476389abe9bbe69efc56
38 N2128688c61a74d0fbe87de100d042048 schema:volumeNumber 16
39 rdf:type schema:PublicationVolume
40 N6095c9286616476389abe9bbe69efc56 rdf:first sg:person.015556313103.67
41 rdf:rest Nf2135ecad10243b283874d1ba1979411
42 N8c9c85e4438241588f0c5321ed769538 schema:name dimensions_id
43 schema:value pub.1041919704
44 rdf:type schema:PropertyValue
45 N9d8cd0a1b70844c6a0a99e6c30bfe02c rdf:first sg:person.011430775361.45
46 rdf:rest rdf:nil
47 Nabf179f2bbe846be8178a254a9eacae8 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 Nad9b77bf733e4deea781b8dda5a1f869 schema:name doi
50 schema:value 10.1007/s00521-006-0050-1
51 rdf:type schema:PropertyValue
52 Nd0ece38fffeb4cdf9b19f1655507301c schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ndd2cae6e616f4509ae0072c421be7bda schema:name readcube_id
55 schema:value c7aff0c2e08f9af8dbc88372e822e84bdd2e00bdb77a04418e8909f93d996807
56 rdf:type schema:PropertyValue
57 Nf2135ecad10243b283874d1ba1979411 rdf:first sg:person.012251430245.24
58 rdf:rest N9d8cd0a1b70844c6a0a99e6c30bfe02c
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
63 schema:name Artificial Intelligence and Image Processing
64 rdf:type schema:DefinedTerm
65 sg:journal.1104357 schema:issn 0941-0643
66 1433-3058
67 schema:name Neural Computing and Applications
68 rdf:type schema:Periodical
69 sg:person.011430775361.45 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
70 schema:familyName Zaera
71 schema:givenName R.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011430775361.45
73 rdf:type schema:Person
74 sg:person.011537037147.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
75 schema:familyName García-Crespo
76 schema:givenName A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86
78 rdf:type schema:Person
79 sg:person.012251430245.24 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
80 schema:familyName Fernández-Fdz
81 schema:givenName D.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012251430245.24
83 rdf:type schema:Person
84 sg:person.015556313103.67 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
85 schema:familyName Ruiz-Mezcua
86 schema:givenName B.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67
88 rdf:type schema:Person
89 https://doi.org/10.1016/0020-7225(83)90105-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025940886
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0020-7683(74)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046217549
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0734-743x(87)90029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018440657
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.engfracmech.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042951002
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0045-7825(02)00221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287877
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0045-7949(01)00083-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415514
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0263-8223(03)00038-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034519332
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0734-743x(97)00035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021309892
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1073/pnas.81.10.3088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049596495
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
108 schema:name Computer Science Department, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
109 Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
110 Research Institute “Pedro Juan de Lastanosa”, University Carlos III of Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...