Neue Fügetechniken mit höherer Prozesssicherheit View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05

AUTHORS

Christof Sommitsch, Gerhard Posch, Thomas Weinberger, Gunter Figner

ABSTRACT

In joining technology new welding techniques were established in the last years, aiming at automation, higher process stability and higher economic efficiency. For arc welding processes, new technologies were developed to reduce and to focus heat input (e. g. Cold Metal Transfer and laserhybrid welding). Another advantage is the high welding velocity. For the conventional welding techniques the electrode welding is replaced by metal active gas welding in modern industrialized countries. Thereby flux cored wire electrodes are often applied. The weld pool is, analogous to electrode welding, protected against the atmosphere by a welding slag. By applying this technique, it can be welded in overhead positions and with a more stable arc. Moreover, the welding parameter window is wider and the welding error-rate is reduced. In the area of friction welding processes, the friction stir welding technique is gaining relevance. The work pieces are simply stirred with each other. The required heat generation and the stirring action are carried out by a rotating special shaped tool, resulting in a weld seam, which is produced without melting of the work piece (solid state welding). Materials and material combinations are joinable, which are known as severely or nonweldable when using conventional welding techniques. Successful welds were accomplished for high strength aluminum alloys, cast aluminum, magnesium, copper, titan, steel, steel-aluminum and polymers. More... »

PAGES

219-226

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00501-010-0565-8

DOI

http://dx.doi.org/10.1007/s00501-010-0565-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020721567


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Werkstoffkunde und Schwei\u00dftechnik, Technische Universit\u00e4t Graz, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde und Schwei\u00dftechnik, Technische Universit\u00e4t Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sommitsch", 
        "givenName": "Christof", 
        "id": "sg:person.010477425273.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477425273.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "B\u00f6hler Schwei\u00dftechnik Austria GmbH, Kapfenberg, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "B\u00f6hler Schwei\u00dftechnik Austria GmbH, Kapfenberg, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Posch", 
        "givenName": "Gerhard", 
        "id": "sg:person.012714555253.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012714555253.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Werkstoffkunde und Schwei\u00dftechnik, Technische Universit\u00e4t Graz, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde und Schwei\u00dftechnik, Technische Universit\u00e4t Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weinberger", 
        "givenName": "Thomas", 
        "id": "sg:person.011755045565.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755045565.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Werkstoffkunde und Schwei\u00dftechnik, Technische Universit\u00e4t Graz, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde und Schwei\u00dftechnik, Technische Universit\u00e4t Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Figner", 
        "givenName": "Gunter", 
        "id": "sg:person.013301673365.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301673365.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03266697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036673746", 
          "https://doi.org/10.1007/bf03266697"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "In joining technology new welding techniques were established in the last years, aiming at automation, higher process stability and higher economic efficiency. For arc welding processes, new technologies were developed to reduce and to focus heat input (e. g. Cold Metal Transfer and laserhybrid welding). Another advantage is the high welding velocity. For the conventional welding techniques the electrode welding is replaced by metal active gas welding in modern industrialized countries. Thereby flux cored wire electrodes are often applied. The weld pool is, analogous to electrode welding, protected against the atmosphere by a welding slag. By applying this technique, it can be welded in overhead positions and with a more stable arc. Moreover, the welding parameter window is wider and the welding error-rate is reduced. In the area of friction welding processes, the friction stir welding technique is gaining relevance. The work pieces are simply stirred with each other. The required heat generation and the stirring action are carried out by a rotating special shaped tool, resulting in a weld seam, which is produced without melting of the work piece (solid state welding). Materials and material combinations are joinable, which are known as severely or nonweldable when using conventional welding techniques. Successful welds were accomplished for high strength aluminum alloys, cast aluminum, magnesium, copper, titan, steel, steel-aluminum and polymers.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00501-010-0565-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136840", 
        "issn": [
          "0005-8912", 
          "1613-7531"
        ], 
        "name": "BHM Berg- und H\u00fcttenm\u00e4nnische Monatshefte", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "155"
      }
    ], 
    "keywords": [
      "welding technique", 
      "welding process", 
      "work piece", 
      "friction stir welding technique", 
      "high-strength aluminum alloys", 
      "metal active gas welding", 
      "new welding technique", 
      "high welding velocity", 
      "conventional welding techniques", 
      "friction welding process", 
      "arc welding process", 
      "strength aluminum alloys", 
      "high process stability", 
      "weld pool", 
      "welding velocity", 
      "conventional welding", 
      "gas welding", 
      "successful welds", 
      "welding slag", 
      "weld seam", 
      "aluminum alloy", 
      "heat input", 
      "electrode welding", 
      "stirring action", 
      "material combinations", 
      "heat generation", 
      "process stability", 
      "welding", 
      "stable arc", 
      "shaped tool", 
      "parameter window", 
      "high economic efficiency", 
      "wire electrode", 
      "overhead position", 
      "welds", 
      "steel", 
      "slag", 
      "alloy", 
      "seam", 
      "aluminum", 
      "technique", 
      "economic efficiency", 
      "velocity", 
      "new technologies", 
      "electrode", 
      "polymers", 
      "materials", 
      "process", 
      "flux", 
      "modern industrialized countries", 
      "melting", 
      "copper", 
      "efficiency", 
      "stability", 
      "automation", 
      "atmosphere", 
      "technology", 
      "arc", 
      "generation", 
      "advantages", 
      "magnesium", 
      "input", 
      "window", 
      "pieces", 
      "last years", 
      "combination", 
      "area", 
      "Titan", 
      "position", 
      "tool", 
      "pool", 
      "action", 
      "industrialized countries", 
      "years", 
      "relevance", 
      "countries"
    ], 
    "name": "Neue F\u00fcgetechniken mit h\u00f6herer Prozesssicherheit", 
    "pagination": "219-226", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020721567"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00501-010-0565-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00501-010-0565-8", 
      "https://app.dimensions.ai/details/publication/pub.1020721567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00501-010-0565-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00501-010-0565-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00501-010-0565-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00501-010-0565-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00501-010-0565-8'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      103 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00501-010-0565-8 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 anzsrc-for:0912
4 schema:author N258ddb6248e34266b0dad8f7f806aa44
5 schema:citation sg:pub.10.1007/bf03266697
6 schema:datePublished 2010-05
7 schema:datePublishedReg 2010-05-01
8 schema:description In joining technology new welding techniques were established in the last years, aiming at automation, higher process stability and higher economic efficiency. For arc welding processes, new technologies were developed to reduce and to focus heat input (e. g. Cold Metal Transfer and laserhybrid welding). Another advantage is the high welding velocity. For the conventional welding techniques the electrode welding is replaced by metal active gas welding in modern industrialized countries. Thereby flux cored wire electrodes are often applied. The weld pool is, analogous to electrode welding, protected against the atmosphere by a welding slag. By applying this technique, it can be welded in overhead positions and with a more stable arc. Moreover, the welding parameter window is wider and the welding error-rate is reduced. In the area of friction welding processes, the friction stir welding technique is gaining relevance. The work pieces are simply stirred with each other. The required heat generation and the stirring action are carried out by a rotating special shaped tool, resulting in a weld seam, which is produced without melting of the work piece (solid state welding). Materials and material combinations are joinable, which are known as severely or nonweldable when using conventional welding techniques. Successful welds were accomplished for high strength aluminum alloys, cast aluminum, magnesium, copper, titan, steel, steel-aluminum and polymers.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N466063de142b4baaae16cd4587796f0b
12 Nb4cc437b165e4590a2e3c1f9826af76a
13 sg:journal.1136840
14 schema:keywords Titan
15 action
16 advantages
17 alloy
18 aluminum
19 aluminum alloy
20 arc
21 arc welding process
22 area
23 atmosphere
24 automation
25 combination
26 conventional welding
27 conventional welding techniques
28 copper
29 countries
30 economic efficiency
31 efficiency
32 electrode
33 electrode welding
34 flux
35 friction stir welding technique
36 friction welding process
37 gas welding
38 generation
39 heat generation
40 heat input
41 high economic efficiency
42 high process stability
43 high welding velocity
44 high-strength aluminum alloys
45 industrialized countries
46 input
47 last years
48 magnesium
49 material combinations
50 materials
51 melting
52 metal active gas welding
53 modern industrialized countries
54 new technologies
55 new welding technique
56 overhead position
57 parameter window
58 pieces
59 polymers
60 pool
61 position
62 process
63 process stability
64 relevance
65 seam
66 shaped tool
67 slag
68 stability
69 stable arc
70 steel
71 stirring action
72 strength aluminum alloys
73 successful welds
74 technique
75 technology
76 tool
77 velocity
78 weld pool
79 weld seam
80 welding
81 welding process
82 welding slag
83 welding technique
84 welding velocity
85 welds
86 window
87 wire electrode
88 work piece
89 years
90 schema:name Neue Fügetechniken mit höherer Prozesssicherheit
91 schema:pagination 219-226
92 schema:productId N533f5e6e1cc94a1791615feca1c5cb10
93 N5ce2fe5a87b549e8bce7ad297bae473d
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020721567
95 https://doi.org/10.1007/s00501-010-0565-8
96 schema:sdDatePublished 2022-11-24T20:55
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N279c880b391940eb84377961d8fd2ecc
99 schema:url https://doi.org/10.1007/s00501-010-0565-8
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N14a6a8d783e0494792bdb88bbd5cecfa rdf:first sg:person.011755045565.26
104 rdf:rest N832c0da2ac184886baa4e70524cc1472
105 N258ddb6248e34266b0dad8f7f806aa44 rdf:first sg:person.010477425273.00
106 rdf:rest N3cb403b0216b41adb433a21b33b97101
107 N279c880b391940eb84377961d8fd2ecc schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N3cb403b0216b41adb433a21b33b97101 rdf:first sg:person.012714555253.26
110 rdf:rest N14a6a8d783e0494792bdb88bbd5cecfa
111 N466063de142b4baaae16cd4587796f0b schema:issueNumber 5
112 rdf:type schema:PublicationIssue
113 N533f5e6e1cc94a1791615feca1c5cb10 schema:name doi
114 schema:value 10.1007/s00501-010-0565-8
115 rdf:type schema:PropertyValue
116 N5ce2fe5a87b549e8bce7ad297bae473d schema:name dimensions_id
117 schema:value pub.1020721567
118 rdf:type schema:PropertyValue
119 N832c0da2ac184886baa4e70524cc1472 rdf:first sg:person.013301673365.66
120 rdf:rest rdf:nil
121 Nb4cc437b165e4590a2e3c1f9826af76a schema:volumeNumber 155
122 rdf:type schema:PublicationVolume
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
127 schema:name Manufacturing Engineering
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
130 schema:name Materials Engineering
131 rdf:type schema:DefinedTerm
132 sg:journal.1136840 schema:issn 0005-8912
133 1613-7531
134 schema:name BHM Berg- und Hüttenmännische Monatshefte
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.010477425273.00 schema:affiliation grid-institutes:grid.410413.3
138 schema:familyName Sommitsch
139 schema:givenName Christof
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477425273.00
141 rdf:type schema:Person
142 sg:person.011755045565.26 schema:affiliation grid-institutes:grid.410413.3
143 schema:familyName Weinberger
144 schema:givenName Thomas
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755045565.26
146 rdf:type schema:Person
147 sg:person.012714555253.26 schema:affiliation grid-institutes:None
148 schema:familyName Posch
149 schema:givenName Gerhard
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012714555253.26
151 rdf:type schema:Person
152 sg:person.013301673365.66 schema:affiliation grid-institutes:grid.410413.3
153 schema:familyName Figner
154 schema:givenName Gunter
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301673365.66
156 rdf:type schema:Person
157 sg:pub.10.1007/bf03266697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036673746
158 https://doi.org/10.1007/bf03266697
159 rdf:type schema:CreativeWork
160 grid-institutes:None schema:alternateName Böhler Schweißtechnik Austria GmbH, Kapfenberg, Austria
161 schema:name Böhler Schweißtechnik Austria GmbH, Kapfenberg, Austria
162 rdf:type schema:Organization
163 grid-institutes:grid.410413.3 schema:alternateName Institut für Werkstoffkunde und Schweißtechnik, Technische Universität Graz, Graz, Austria
164 schema:name Institut für Werkstoffkunde und Schweißtechnik, Technische Universität Graz, Graz, Austria
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...