Generation of an optimal architecture of neuro force controllers for robot manipulators in unknown environments using genetic programming with fuzzy ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-06

AUTHORS

K. Kiguchi, H. Miyaji, K. Watanabe, K. Izumi, T. Fukuda

ABSTRACT

In this paper, we have applied genetic programming to generate an optimal architecture of neuro force controllers for robot manipulators in any environment. In order to perform precise force control in unknown environments, the optimal structured neuro force controller is generated using genetic programming with fuzzy fitness evaluation. After the architecture of the neuro controller has been optimized for any kinds of environments, it can be applied for a robot contact task with an unknown environment in on-line manner using its own adaptation ability. An effective crossover operation is proposed for the efficient evolution of the controllers. The simulation has been carried out to evaluate the effectiveness of the proposed robot force controller. More... »

PAGES

237-242

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s005000100087

DOI

http://dx.doi.org/10.1007/s005000100087

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031304759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjomachi, Saga 840-8502, Japan E-mail: kiguchi@ieee.org, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiguchi", 
        "givenName": "K.", 
        "id": "sg:person.010020372111.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjomachi, Saga 840-8502, Japan E-mail: kiguchi@ieee.org, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyaji", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjomachi, Saga 840-8502, Japan E-mail: kiguchi@ieee.org, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "K.", 
        "id": "sg:person.015455032037.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455032037.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjomachi, Saga 840-8502, Japan E-mail: kiguchi@ieee.org, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Izumi", 
        "givenName": "K.", 
        "id": "sg:person.01277760753.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277760753.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Center of Cooperative Research in Advanced Science and Technology, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuda", 
        "givenName": "T.", 
        "id": "sg:person.015274722111.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015274722111.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1177/027836498700600101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045875705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836498700600101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045875705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s026357479700057x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054077961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/41.649935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061169282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1999.772522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093659260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1998.677308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093984003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1999.825358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094635973"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-06", 
    "datePublishedReg": "2001-06-01", 
    "description": "In this paper, we have applied genetic programming to generate an optimal architecture of neuro force controllers for robot manipulators in any environment. In order to perform precise force control in unknown environments, the optimal structured neuro force controller is generated using genetic programming with fuzzy fitness evaluation. After the architecture of the neuro controller has been optimized for any kinds of environments, it can be applied for a robot contact task with an unknown environment in on-line manner using its own adaptation ability. An effective crossover operation is proposed for the efficient evolution of the controllers. The simulation has been carried out to evaluate the effectiveness of the proposed robot force controller.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s005000100087", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Generation of an optimal architecture of neuro force controllers for robot manipulators in unknown environments using genetic programming with fuzzy fitness evaluation", 
    "pagination": "237-242", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "952160ae80eb1af278c379716c7f5cdcc44d88408a32dc94aa2646fccd95c5ca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s005000100087"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031304759"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s005000100087", 
      "https://app.dimensions.ai/details/publication/pub.1031304759"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs005000100087"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s005000100087'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s005000100087'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s005000100087'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s005000100087'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s005000100087 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N630f29a57e164f2db11a0b029dc4658a
4 schema:citation https://doi.org/10.1017/s026357479700057x
5 https://doi.org/10.1109/41.649935
6 https://doi.org/10.1109/icsmc.1999.825358
7 https://doi.org/10.1109/robot.1998.677308
8 https://doi.org/10.1109/robot.1999.772522
9 https://doi.org/10.1177/027836498700600101
10 schema:datePublished 2001-06
11 schema:datePublishedReg 2001-06-01
12 schema:description In this paper, we have applied genetic programming to generate an optimal architecture of neuro force controllers for robot manipulators in any environment. In order to perform precise force control in unknown environments, the optimal structured neuro force controller is generated using genetic programming with fuzzy fitness evaluation. After the architecture of the neuro controller has been optimized for any kinds of environments, it can be applied for a robot contact task with an unknown environment in on-line manner using its own adaptation ability. An effective crossover operation is proposed for the efficient evolution of the controllers. The simulation has been carried out to evaluate the effectiveness of the proposed robot force controller.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N4ce950a1ece74e73a714e70548b9a359
17 Nb47f1646c60348de871dbe9998ba3931
18 sg:journal.1050238
19 schema:name Generation of an optimal architecture of neuro force controllers for robot manipulators in unknown environments using genetic programming with fuzzy fitness evaluation
20 schema:pagination 237-242
21 schema:productId Nc91eac9cc8a94a4c80e1c06785ac4a9e
22 Nd33b0815f60f4471b576f29300cd842a
23 Nee3dc65be7184135bfd318a56dcab003
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031304759
25 https://doi.org/10.1007/s005000100087
26 schema:sdDatePublished 2019-04-10T19:09
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N072fead4ff3041308ef015c86539d024
29 schema:url http://link.springer.com/10.1007%2Fs005000100087
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N072fead4ff3041308ef015c86539d024 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N3de45d8ece9e48f8bb3f7098d518245a rdf:first sg:person.015455032037.26
36 rdf:rest N9cb141b0527d4f7ebd449d34d1d7fd7e
37 N4ce950a1ece74e73a714e70548b9a359 schema:volumeNumber 5
38 rdf:type schema:PublicationVolume
39 N630f29a57e164f2db11a0b029dc4658a rdf:first sg:person.010020372111.48
40 rdf:rest Nae3493d9690140828bd7247c4200d3e9
41 N83976776960f47d09dfa79a472e28e2b schema:affiliation https://www.grid.ac/institutes/grid.412339.e
42 schema:familyName Miyaji
43 schema:givenName H.
44 rdf:type schema:Person
45 N9cb141b0527d4f7ebd449d34d1d7fd7e rdf:first sg:person.01277760753.11
46 rdf:rest Nb78fbad9bf0540f5a4d1850394ac8d61
47 Nae3493d9690140828bd7247c4200d3e9 rdf:first N83976776960f47d09dfa79a472e28e2b
48 rdf:rest N3de45d8ece9e48f8bb3f7098d518245a
49 Nb47f1646c60348de871dbe9998ba3931 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 Nb78fbad9bf0540f5a4d1850394ac8d61 rdf:first sg:person.015274722111.31
52 rdf:rest rdf:nil
53 Nc91eac9cc8a94a4c80e1c06785ac4a9e schema:name readcube_id
54 schema:value 952160ae80eb1af278c379716c7f5cdcc44d88408a32dc94aa2646fccd95c5ca
55 rdf:type schema:PropertyValue
56 Nd33b0815f60f4471b576f29300cd842a schema:name doi
57 schema:value 10.1007/s005000100087
58 rdf:type schema:PropertyValue
59 Nee3dc65be7184135bfd318a56dcab003 schema:name dimensions_id
60 schema:value pub.1031304759
61 rdf:type schema:PropertyValue
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:journal.1050238 schema:issn 1432-7643
69 1433-7479
70 schema:name Soft Computing
71 rdf:type schema:Periodical
72 sg:person.010020372111.48 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
73 schema:familyName Kiguchi
74 schema:givenName K.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48
76 rdf:type schema:Person
77 sg:person.01277760753.11 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
78 schema:familyName Izumi
79 schema:givenName K.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277760753.11
81 rdf:type schema:Person
82 sg:person.015274722111.31 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
83 schema:familyName Fukuda
84 schema:givenName T.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015274722111.31
86 rdf:type schema:Person
87 sg:person.015455032037.26 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
88 schema:familyName Watanabe
89 schema:givenName K.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455032037.26
91 rdf:type schema:Person
92 https://doi.org/10.1017/s026357479700057x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054077961
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/41.649935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169282
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/icsmc.1999.825358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094635973
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/robot.1998.677308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093984003
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/robot.1999.772522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093659260
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1177/027836498700600101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045875705
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
105 schema:name Center of Cooperative Research in Advanced Science and Technology, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, JP
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.412339.e schema:alternateName Saga University
108 schema:name Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjomachi, Saga 840-8502, Japan E-mail: kiguchi@ieee.org, JP
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...