Urban hazmat transportation with multi-factor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Jiaoman Du, Xiang Li, Lei Li, Changjing Shang

ABSTRACT

In this paper, an urban hazmat transportation problem considering multiple factors that tangle with real-world applications (i.e., weather conditions, traffic conditions, population density, time window, link closure and half link closure) is investigated. Based on multiple depot capacitated vehicle routing problem, we provide a multi-level programming formulation for urban hazmat transportation. To obtain the Pareto optimal solution, an improved biogeography-based optimization (improved BBO) algorithm is designed, comparing with the original BBO and genetic algorithm, with both simulated numerical examples and a real-world case study, demonstrating the effectiveness of the proposed approach. More... »

PAGES

1-22

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x

DOI

http://dx.doi.org/10.1007/s00500-019-03956-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113172271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Faculty of Science and Engineering, Hosei University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Jiaoman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "School of Economics and Management, Beijing University of Chemical Technology, Beijing, China", 
            "Department of Computer Science, Aberystwyth University, Aberystwyth, UK", 
            "Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Faculty of Science and Engineering, Hosei University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aberystwyth University", 
          "id": "https://www.grid.ac/institutes/grid.8186.7", 
          "name": [
            "Department of Computer Science, Aberystwyth University, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shang", 
        "givenName": "Changjing", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.seps.2014.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000378401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13676-012-0004-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000710994", 
          "https://doi.org/10.1007/s13676-012-0004-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aei.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002448683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aei.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002448683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(94)00099-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006531635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2016.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007035581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-4575(76)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007267916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-4575(88)90013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007517195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2012.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014703271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-011-9156-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015392093", 
          "https://doi.org/10.1007/s11067-011-9156-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079.2015.1086577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018128824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2014.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019469441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-015-1113-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120583", 
          "https://doi.org/10.1007/s00477-015-1113-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-1647(76)90055-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023944620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0965-8564(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024414459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6794-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768108", 
          "https://doi.org/10.1007/978-1-4614-6794-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2005-1897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031038164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.01.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-0507(06)14009-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033768924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2015.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037226162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-012-1285-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043953913", 
          "https://doi.org/10.1007/s10479-012-1285-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trd.2014.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048146905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbspro.2010.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048858006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050081714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050081714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051419531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-947x(2005)131:9(699)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057604034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270252833208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.919004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.12.4.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.36.1.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.46.5.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.2015.0639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.25.2.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064735188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083697708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02286203.2000.11442173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093092991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1997.625786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093490010"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, an urban hazmat transportation problem considering multiple factors that tangle with real-world applications (i.e., weather conditions, traffic conditions, population density, time window, link closure and half link closure) is investigated. Based on multiple depot capacitated vehicle routing problem, we provide a multi-level programming formulation for urban hazmat transportation. To obtain the Pareto optimal solution, an improved biogeography-based optimization (improved BBO) algorithm is designed, comparing with the original BBO and genetic algorithm, with both simulated numerical examples and a real-world case study, demonstrating the effectiveness of the proposed approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-019-03956-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Urban hazmat transportation with multi-factor", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4768a4cea2403dfe7fa461c44311a3918231b774f838a40ac1df14cde1d01865"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-019-03956-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113172271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-019-03956-x", 
      "https://app.dimensions.ai/details/publication/pub.1113172271"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-019-03956-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      61 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-019-03956-x schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nf2af89217af84997bebaa4ede8d56d58
4 schema:citation sg:pub.10.1007/978-1-4614-6794-6_5
5 sg:pub.10.1007/s00477-015-1113-6
6 sg:pub.10.1007/s10479-012-1285-0
7 sg:pub.10.1007/s11067-011-9156-9
8 sg:pub.10.1007/s13676-012-0004-y
9 https://doi.org/10.1016/0001-4575(76)90002-6
10 https://doi.org/10.1016/0001-4575(88)90013-9
11 https://doi.org/10.1016/0041-1647(76)90055-1
12 https://doi.org/10.1016/0377-2217(94)00099-x
13 https://doi.org/10.1016/0965-8564(94)90033-7
14 https://doi.org/10.1016/j.aei.2005.01.004
15 https://doi.org/10.1016/j.cor.2005.06.003
16 https://doi.org/10.1016/j.cor.2005.06.005
17 https://doi.org/10.1016/j.ejor.2014.08.005
18 https://doi.org/10.1016/j.ins.2012.07.007
19 https://doi.org/10.1016/j.ins.2014.01.038
20 https://doi.org/10.1016/j.ins.2017.02.011
21 https://doi.org/10.1016/j.jhazmat.2016.11.015
22 https://doi.org/10.1016/j.sbspro.2010.04.018
23 https://doi.org/10.1016/j.seps.2014.02.003
24 https://doi.org/10.1016/j.trb.2015.10.009
25 https://doi.org/10.1016/j.trd.2014.11.009
26 https://doi.org/10.1016/j.tre.2015.02.003
27 https://doi.org/10.1016/j.tre.2016.06.007
28 https://doi.org/10.1016/s0927-0507(06)14009-8
29 https://doi.org/10.1061/(asce)0733-947x(2005)131:9(699)
30 https://doi.org/10.1080/02286203.2000.11442173
31 https://doi.org/10.1080/03081079.2015.1086577
32 https://doi.org/10.1089/10665270252833208
33 https://doi.org/10.1109/icsmc.1997.625786
34 https://doi.org/10.1109/tevc.2008.919004
35 https://doi.org/10.1287/opre.12.4.568
36 https://doi.org/10.1287/opre.36.1.84
37 https://doi.org/10.1287/opre.46.5.625
38 https://doi.org/10.1287/trsc.2015.0639
39 https://doi.org/10.1287/trsc.25.2.146
40 https://doi.org/10.2514/6.2005-1897
41 schema:datePublished 2019-04-01
42 schema:datePublishedReg 2019-04-01
43 schema:description In this paper, an urban hazmat transportation problem considering multiple factors that tangle with real-world applications (i.e., weather conditions, traffic conditions, population density, time window, link closure and half link closure) is investigated. Based on multiple depot capacitated vehicle routing problem, we provide a multi-level programming formulation for urban hazmat transportation. To obtain the Pareto optimal solution, an improved biogeography-based optimization (improved BBO) algorithm is designed, comparing with the original BBO and genetic algorithm, with both simulated numerical examples and a real-world case study, demonstrating the effectiveness of the proposed approach.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1050238
48 schema:name Urban hazmat transportation with multi-factor
49 schema:pagination 1-22
50 schema:productId N5c3741e5a67a4a1ea8d9e68c0444cbb8
51 N6130fed0bac44ed9aaa3fa5754ab2ea1
52 Nbde0fa8d717248c590cf7c44b5b13cb2
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113172271
54 https://doi.org/10.1007/s00500-019-03956-x
55 schema:sdDatePublished 2019-04-11T13:51
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N65134be681e94b47ba0fd976f350cdcc
58 schema:url https://link.springer.com/10.1007%2Fs00500-019-03956-x
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N10a982e83478407891a36bf646fb34c4 schema:affiliation https://www.grid.ac/institutes/grid.8186.7
63 schema:familyName Shang
64 schema:givenName Changjing
65 rdf:type schema:Person
66 N254ada56373f44a89a79f58cfb28b4e2 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
67 schema:familyName Li
68 schema:givenName Xiang
69 rdf:type schema:Person
70 N4db8e210813241baa880ada0082ac27b rdf:first N657c31fa76a74cf68d068e25a1139c58
71 rdf:rest Na47a168b09c94104a0cecc686326d744
72 N5c3741e5a67a4a1ea8d9e68c0444cbb8 schema:name doi
73 schema:value 10.1007/s00500-019-03956-x
74 rdf:type schema:PropertyValue
75 N6130fed0bac44ed9aaa3fa5754ab2ea1 schema:name dimensions_id
76 schema:value pub.1113172271
77 rdf:type schema:PropertyValue
78 N65134be681e94b47ba0fd976f350cdcc schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N657c31fa76a74cf68d068e25a1139c58 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
81 schema:familyName Li
82 schema:givenName Lei
83 rdf:type schema:Person
84 N9a136c57542f4b678ce87b3f603c2207 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
85 schema:familyName Du
86 schema:givenName Jiaoman
87 rdf:type schema:Person
88 Na47a168b09c94104a0cecc686326d744 rdf:first N10a982e83478407891a36bf646fb34c4
89 rdf:rest rdf:nil
90 Nbde0fa8d717248c590cf7c44b5b13cb2 schema:name readcube_id
91 schema:value 4768a4cea2403dfe7fa461c44311a3918231b774f838a40ac1df14cde1d01865
92 rdf:type schema:PropertyValue
93 Ndff0e2a4f45e42bb9fc35428bdabfb71 rdf:first N254ada56373f44a89a79f58cfb28b4e2
94 rdf:rest N4db8e210813241baa880ada0082ac27b
95 Nf2af89217af84997bebaa4ede8d56d58 rdf:first N9a136c57542f4b678ce87b3f603c2207
96 rdf:rest Ndff0e2a4f45e42bb9fc35428bdabfb71
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
101 schema:name Numerical and Computational Mathematics
102 rdf:type schema:DefinedTerm
103 sg:journal.1050238 schema:issn 1432-7643
104 1433-7479
105 schema:name Soft Computing
106 rdf:type schema:Periodical
107 sg:pub.10.1007/978-1-4614-6794-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768108
108 https://doi.org/10.1007/978-1-4614-6794-6_5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00477-015-1113-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120583
111 https://doi.org/10.1007/s00477-015-1113-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10479-012-1285-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043953913
114 https://doi.org/10.1007/s10479-012-1285-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11067-011-9156-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015392093
117 https://doi.org/10.1007/s11067-011-9156-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s13676-012-0004-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000710994
120 https://doi.org/10.1007/s13676-012-0004-y
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0001-4575(76)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007267916
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0001-4575(88)90013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007517195
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0041-1647(76)90055-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023944620
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0377-2217(94)00099-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006531635
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0965-8564(94)90033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024414459
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.aei.2005.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002448683
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cor.2005.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050081714
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cor.2005.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040264226
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ejor.2014.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019469441
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ins.2012.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014703271
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ins.2014.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743918
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ins.2017.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083697708
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jhazmat.2016.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007035581
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.sbspro.2010.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048858006
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.seps.2014.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000378401
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.trb.2015.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008799964
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.trd.2014.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048146905
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.tre.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037226162
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.tre.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051419531
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0927-0507(06)14009-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033768924
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1061/(asce)0733-947x(2005)131:9(699) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057604034
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/02286203.2000.11442173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093092991
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/03081079.2015.1086577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018128824
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1089/10665270252833208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204918
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/icsmc.1997.625786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093490010
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tevc.2008.919004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604873
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1287/opre.12.4.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726778
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1287/opre.36.1.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729897
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1287/opre.46.5.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731082
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1287/trsc.2015.0639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734984
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1287/trsc.25.2.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735188
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2514/6.2005-1897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031038164
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
187 schema:name Faculty of Science and Engineering, Hosei University, Tokyo, Japan
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.48166.3d schema:alternateName Beijing University of Chemical Technology
190 schema:name Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
191 Department of Computer Science, Aberystwyth University, Aberystwyth, UK
192 School of Economics and Management, Beijing University of Chemical Technology, Beijing, China
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.8186.7 schema:alternateName Aberystwyth University
195 schema:name Department of Computer Science, Aberystwyth University, Aberystwyth, UK
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...