Urban hazmat transportation with multi-factor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Jiaoman Du, Xiang Li, Lei Li, Changjing Shang

ABSTRACT

In this paper, an urban hazmat transportation problem considering multiple factors that tangle with real-world applications (i.e., weather conditions, traffic conditions, population density, time window, link closure and half link closure) is investigated. Based on multiple depot capacitated vehicle routing problem, we provide a multi-level programming formulation for urban hazmat transportation. To obtain the Pareto optimal solution, an improved biogeography-based optimization (improved BBO) algorithm is designed, comparing with the original BBO and genetic algorithm, with both simulated numerical examples and a real-world case study, demonstrating the effectiveness of the proposed approach. More... »

PAGES

1-22

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x

DOI

http://dx.doi.org/10.1007/s00500-019-03956-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113172271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Faculty of Science and Engineering, Hosei University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Jiaoman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "School of Economics and Management, Beijing University of Chemical Technology, Beijing, China", 
            "Department of Computer Science, Aberystwyth University, Aberystwyth, UK", 
            "Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Faculty of Science and Engineering, Hosei University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aberystwyth University", 
          "id": "https://www.grid.ac/institutes/grid.8186.7", 
          "name": [
            "Department of Computer Science, Aberystwyth University, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shang", 
        "givenName": "Changjing", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.seps.2014.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000378401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13676-012-0004-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000710994", 
          "https://doi.org/10.1007/s13676-012-0004-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aei.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002448683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aei.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002448683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(94)00099-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006531635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2016.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007035581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-4575(76)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007267916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-4575(88)90013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007517195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2012.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014703271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-011-9156-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015392093", 
          "https://doi.org/10.1007/s11067-011-9156-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079.2015.1086577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018128824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2014.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019469441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-015-1113-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120583", 
          "https://doi.org/10.1007/s00477-015-1113-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-1647(76)90055-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023944620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0965-8564(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024414459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6794-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768108", 
          "https://doi.org/10.1007/978-1-4614-6794-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2005-1897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031038164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.01.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-0507(06)14009-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033768924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2015.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037226162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-012-1285-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043953913", 
          "https://doi.org/10.1007/s10479-012-1285-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trd.2014.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048146905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbspro.2010.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048858006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050081714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050081714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051419531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-947x(2005)131:9(699)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057604034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270252833208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.919004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.12.4.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.36.1.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.46.5.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.2015.0639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.25.2.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064735188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083697708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02286203.2000.11442173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093092991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1997.625786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093490010"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, an urban hazmat transportation problem considering multiple factors that tangle with real-world applications (i.e., weather conditions, traffic conditions, population density, time window, link closure and half link closure) is investigated. Based on multiple depot capacitated vehicle routing problem, we provide a multi-level programming formulation for urban hazmat transportation. To obtain the Pareto optimal solution, an improved biogeography-based optimization (improved BBO) algorithm is designed, comparing with the original BBO and genetic algorithm, with both simulated numerical examples and a real-world case study, demonstrating the effectiveness of the proposed approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-019-03956-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Urban hazmat transportation with multi-factor", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4768a4cea2403dfe7fa461c44311a3918231b774f838a40ac1df14cde1d01865"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-019-03956-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113172271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-019-03956-x", 
      "https://app.dimensions.ai/details/publication/pub.1113172271"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-019-03956-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03956-x'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      61 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-019-03956-x schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N9f18cb05d7d940b0b4b48a308488d4c1
4 schema:citation sg:pub.10.1007/978-1-4614-6794-6_5
5 sg:pub.10.1007/s00477-015-1113-6
6 sg:pub.10.1007/s10479-012-1285-0
7 sg:pub.10.1007/s11067-011-9156-9
8 sg:pub.10.1007/s13676-012-0004-y
9 https://doi.org/10.1016/0001-4575(76)90002-6
10 https://doi.org/10.1016/0001-4575(88)90013-9
11 https://doi.org/10.1016/0041-1647(76)90055-1
12 https://doi.org/10.1016/0377-2217(94)00099-x
13 https://doi.org/10.1016/0965-8564(94)90033-7
14 https://doi.org/10.1016/j.aei.2005.01.004
15 https://doi.org/10.1016/j.cor.2005.06.003
16 https://doi.org/10.1016/j.cor.2005.06.005
17 https://doi.org/10.1016/j.ejor.2014.08.005
18 https://doi.org/10.1016/j.ins.2012.07.007
19 https://doi.org/10.1016/j.ins.2014.01.038
20 https://doi.org/10.1016/j.ins.2017.02.011
21 https://doi.org/10.1016/j.jhazmat.2016.11.015
22 https://doi.org/10.1016/j.sbspro.2010.04.018
23 https://doi.org/10.1016/j.seps.2014.02.003
24 https://doi.org/10.1016/j.trb.2015.10.009
25 https://doi.org/10.1016/j.trd.2014.11.009
26 https://doi.org/10.1016/j.tre.2015.02.003
27 https://doi.org/10.1016/j.tre.2016.06.007
28 https://doi.org/10.1016/s0927-0507(06)14009-8
29 https://doi.org/10.1061/(asce)0733-947x(2005)131:9(699)
30 https://doi.org/10.1080/02286203.2000.11442173
31 https://doi.org/10.1080/03081079.2015.1086577
32 https://doi.org/10.1089/10665270252833208
33 https://doi.org/10.1109/icsmc.1997.625786
34 https://doi.org/10.1109/tevc.2008.919004
35 https://doi.org/10.1287/opre.12.4.568
36 https://doi.org/10.1287/opre.36.1.84
37 https://doi.org/10.1287/opre.46.5.625
38 https://doi.org/10.1287/trsc.2015.0639
39 https://doi.org/10.1287/trsc.25.2.146
40 https://doi.org/10.2514/6.2005-1897
41 schema:datePublished 2019-04-01
42 schema:datePublishedReg 2019-04-01
43 schema:description In this paper, an urban hazmat transportation problem considering multiple factors that tangle with real-world applications (i.e., weather conditions, traffic conditions, population density, time window, link closure and half link closure) is investigated. Based on multiple depot capacitated vehicle routing problem, we provide a multi-level programming formulation for urban hazmat transportation. To obtain the Pareto optimal solution, an improved biogeography-based optimization (improved BBO) algorithm is designed, comparing with the original BBO and genetic algorithm, with both simulated numerical examples and a real-world case study, demonstrating the effectiveness of the proposed approach.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1050238
48 schema:name Urban hazmat transportation with multi-factor
49 schema:pagination 1-22
50 schema:productId N78ec9450f7694ed2a87c972d73f75008
51 Na8b8b9c6d1a84d76885de12672206e9d
52 Nb98721d7309d44ca9f34676722e6d12e
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113172271
54 https://doi.org/10.1007/s00500-019-03956-x
55 schema:sdDatePublished 2019-04-11T13:51
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N5ce63b202a1b46f996e6fac63140ef26
58 schema:url https://link.springer.com/10.1007%2Fs00500-019-03956-x
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0702794e705c4ae7aa11fec0313cb033 rdf:first Na5c1f541d11a4ccead8ae0c898a533f5
63 rdf:rest N0be0c16c27564adf84cfa52c5e16d69f
64 N0be0c16c27564adf84cfa52c5e16d69f rdf:first Nc24220c060fb4b8993719830695cd505
65 rdf:rest rdf:nil
66 N5ce63b202a1b46f996e6fac63140ef26 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N705942edc3ba496f87d0d77d4e89ca6c schema:affiliation https://www.grid.ac/institutes/grid.257114.4
69 schema:familyName Du
70 schema:givenName Jiaoman
71 rdf:type schema:Person
72 N78ec9450f7694ed2a87c972d73f75008 schema:name readcube_id
73 schema:value 4768a4cea2403dfe7fa461c44311a3918231b774f838a40ac1df14cde1d01865
74 rdf:type schema:PropertyValue
75 N9f18cb05d7d940b0b4b48a308488d4c1 rdf:first N705942edc3ba496f87d0d77d4e89ca6c
76 rdf:rest Ne7b0a0e1ca7445d7abe4486a6c30b3c8
77 Na5c1f541d11a4ccead8ae0c898a533f5 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
78 schema:familyName Li
79 schema:givenName Lei
80 rdf:type schema:Person
81 Na8b8b9c6d1a84d76885de12672206e9d schema:name dimensions_id
82 schema:value pub.1113172271
83 rdf:type schema:PropertyValue
84 Nb98721d7309d44ca9f34676722e6d12e schema:name doi
85 schema:value 10.1007/s00500-019-03956-x
86 rdf:type schema:PropertyValue
87 Nc24220c060fb4b8993719830695cd505 schema:affiliation https://www.grid.ac/institutes/grid.8186.7
88 schema:familyName Shang
89 schema:givenName Changjing
90 rdf:type schema:Person
91 Ne7b0a0e1ca7445d7abe4486a6c30b3c8 rdf:first Ne95ad7fe3c574968a96f4e8362d8b088
92 rdf:rest N0702794e705c4ae7aa11fec0313cb033
93 Ne95ad7fe3c574968a96f4e8362d8b088 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
94 schema:familyName Li
95 schema:givenName Xiang
96 rdf:type schema:Person
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
101 schema:name Numerical and Computational Mathematics
102 rdf:type schema:DefinedTerm
103 sg:journal.1050238 schema:issn 1432-7643
104 1433-7479
105 schema:name Soft Computing
106 rdf:type schema:Periodical
107 sg:pub.10.1007/978-1-4614-6794-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768108
108 https://doi.org/10.1007/978-1-4614-6794-6_5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00477-015-1113-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120583
111 https://doi.org/10.1007/s00477-015-1113-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10479-012-1285-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043953913
114 https://doi.org/10.1007/s10479-012-1285-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11067-011-9156-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015392093
117 https://doi.org/10.1007/s11067-011-9156-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s13676-012-0004-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000710994
120 https://doi.org/10.1007/s13676-012-0004-y
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0001-4575(76)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007267916
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0001-4575(88)90013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007517195
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0041-1647(76)90055-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023944620
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0377-2217(94)00099-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006531635
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0965-8564(94)90033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024414459
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.aei.2005.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002448683
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cor.2005.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050081714
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cor.2005.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040264226
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ejor.2014.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019469441
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ins.2012.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014703271
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ins.2014.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743918
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ins.2017.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083697708
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jhazmat.2016.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007035581
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.sbspro.2010.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048858006
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.seps.2014.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000378401
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.trb.2015.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008799964
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.trd.2014.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048146905
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.tre.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037226162
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.tre.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051419531
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0927-0507(06)14009-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033768924
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1061/(asce)0733-947x(2005)131:9(699) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057604034
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/02286203.2000.11442173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093092991
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/03081079.2015.1086577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018128824
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1089/10665270252833208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204918
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/icsmc.1997.625786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093490010
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tevc.2008.919004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604873
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1287/opre.12.4.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726778
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1287/opre.36.1.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729897
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1287/opre.46.5.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731082
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1287/trsc.2015.0639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734984
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1287/trsc.25.2.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735188
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2514/6.2005-1897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031038164
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
187 schema:name Faculty of Science and Engineering, Hosei University, Tokyo, Japan
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.48166.3d schema:alternateName Beijing University of Chemical Technology
190 schema:name Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
191 Department of Computer Science, Aberystwyth University, Aberystwyth, UK
192 School of Economics and Management, Beijing University of Chemical Technology, Beijing, China
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.8186.7 schema:alternateName Aberystwyth University
195 schema:name Department of Computer Science, Aberystwyth University, Aberystwyth, UK
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...