A two-warehouse EOQ model with interval-valued inventory cost and advance payment for deteriorating item under particle swarm optimization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-12

AUTHORS

Ali Akbar Shaikh, Subhash Chandra Das, Asoke Kumar Bhunia, Gobinda Chandra Panda, Md. Al-Amin Khan

ABSTRACT

Generally, most of the inventory costs are not always fixed due to uncertainty of competitive market. In the existing literature, it is found that several researchers have worked on uncertainty considering inventory parameters as fuzzy valued. In this work, we have represented the inventory parameters as interval. Using this concept, we have developed a two-warehouse inventory model with advanced payment, partial backlogged shortages. Due to uncertainty, this problem cannot be solved by existing direct/indirect optimization technique. For this purpose, different variants of particle swarm optimization techniques (viz. PSO-CO, WQPSO and GQPSO) have been developed to solve the problem of the proposed inventory model by using interval arithmetic and interval order relations. Finally, to illustrate and also to validate the proposed model, a numerical example has been solved and the best found solutions (which is either optimal solution or near optimal solution) obtained from different variants of PSO have been compared. Then, a sensitivity analysis has been performed to study the effect of changes of different parameters of the model on the optimal policy. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-019-03890-y

DOI

http://dx.doi.org/10.1007/s00500-019-03890-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112703102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Monterrey Institute of Technology and Higher Education", 
          "id": "https://www.grid.ac/institutes/grid.419886.a", 
          "name": [
            "Department of Mathematics, The University of Burdwan, 713104, Burdwan, India", 
            "School of Engineering and Sciences, Tecnol\u00f3gico de Monterrey, E. Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo Le\u00f3n, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaikh", 
        "givenName": "Ali Akbar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Chandrapur College, 713145, Chandapur, Burdwan, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Subhash Chandra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burdwan", 
          "id": "https://www.grid.ac/institutes/grid.411826.8", 
          "name": [
            "Department of Mathematics, The University of Burdwan, 713104, Burdwan, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhunia", 
        "givenName": "Asoke Kumar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Mahavir Institute of Engineering and Technology, BBSR, Bhubaneswar, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panda", 
        "givenName": "Gobinda Chandra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jahangirnagar University", 
          "id": "https://www.grid.ac/institutes/grid.411808.4", 
          "name": [
            "Department of Mathematics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Amin Khan", 
        "givenName": "Md.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001081487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2013.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001744591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2012.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004703775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/23307706.2015.1092099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005037813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.12.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005779307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2014.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009454677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2014.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010931972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2012.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014335269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/itor.12297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014370539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2014.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015978948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2008.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021989289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2014.891672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024513453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2010.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024996708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025512381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/23302674.2014.946981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026947936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2013.807385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031802195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2008.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032755840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13873954.2016.1150860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034259814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2016.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037230749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2012.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040519395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-015-2100-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042531300", 
          "https://doi.org/10.1007/s10479-015-2100-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-013-9223-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043629633", 
          "https://doi.org/10.1007/s11081-013-9223-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2010.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044794715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2012.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046306061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2015.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046726685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-010-2689-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048207666", 
          "https://doi.org/10.1007/s00170-010-2689-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-010-2689-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048207666", 
          "https://doi.org/10.1007/s00170-010-2689-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2012.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048359097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2013.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048974801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2014.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051948045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/ro/2016047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057065852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.985692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijmor.2011.043015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067477117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/jimo.2016.12.1091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5267/j.ijiec.2013.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072734161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2017.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083908247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijlsm.2017.083221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084320566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-017-2492-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084518334", 
          "https://doi.org/10.1007/s10479-017-2492-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-017-2492-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084518334", 
          "https://doi.org/10.1007/s10479-017-2492-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-017-2510-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085392875", 
          "https://doi.org/10.1007/s10479-017-2510-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-017-2510-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085392875", 
          "https://doi.org/10.1007/s10479-017-2510-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbfmi.2017.084055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085477146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021759591750021x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090511843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24200/sci.2017.4042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091254520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3168-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091307998", 
          "https://doi.org/10.1007/s00521-017-3168-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3168-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091307998", 
          "https://doi.org/10.1007/s00521-017-3168-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmsy.2017.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092229532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccis.2004.1460396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093362375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2004.1330875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093369569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.1999.785513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093465497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01605682.2017.1390524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104595151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijlsm.2019.097070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110792386"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-12", 
    "datePublishedReg": "2019-03-12", 
    "description": "Generally, most of the inventory costs are not always fixed due to uncertainty of competitive market. In the existing literature, it is found that several researchers have worked on uncertainty considering inventory parameters as fuzzy valued. In this work, we have represented the inventory parameters as interval. Using this concept, we have developed a two-warehouse inventory model with advanced payment, partial backlogged shortages. Due to uncertainty, this problem cannot be solved by existing direct/indirect optimization technique. For this purpose, different variants of particle swarm optimization techniques (viz. PSO-CO, WQPSO and GQPSO) have been developed to solve the problem of the proposed inventory model by using interval arithmetic and interval order relations. Finally, to illustrate and also to validate the proposed model, a numerical example has been solved and the best found solutions (which is either optimal solution or near optimal solution) obtained from different variants of PSO have been compared. Then, a sensitivity analysis has been performed to study the effect of changes of different parameters of the model on the optimal policy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-019-03890-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "A two-warehouse EOQ model with interval-valued inventory cost and advance payment for deteriorating item under particle swarm optimization", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ffc355c32ac8f90eb3983123f80930a413c9e287aa69ad67745a122a36af0fe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-019-03890-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112703102"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-019-03890-y", 
      "https://app.dimensions.ai/details/publication/pub.1112703102"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127461_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-019-03890-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03890-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03890-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03890-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03890-y'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      73 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-019-03890-y schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nf8515715208c4fcc8bc6c3cf257d5a92
4 schema:citation sg:pub.10.1007/s00170-010-2689-0
5 sg:pub.10.1007/s00521-017-3168-4
6 sg:pub.10.1007/s10479-015-2100-5
7 sg:pub.10.1007/s10479-017-2492-5
8 sg:pub.10.1007/s10479-017-2510-7
9 sg:pub.10.1007/s11081-013-9223-9
10 https://doi.org/10.1016/j.amc.2014.12.137
11 https://doi.org/10.1016/j.apm.2008.07.024
12 https://doi.org/10.1016/j.apm.2010.11.014
13 https://doi.org/10.1016/j.apm.2013.05.065
14 https://doi.org/10.1016/j.apm.2014.02.014
15 https://doi.org/10.1016/j.apm.2016.05.022
16 https://doi.org/10.1016/j.asoc.2017.02.012
17 https://doi.org/10.1016/j.cam.2008.05.025
18 https://doi.org/10.1016/j.cie.2010.07.006
19 https://doi.org/10.1016/j.cie.2014.05.014
20 https://doi.org/10.1016/j.ejor.2010.08.026
21 https://doi.org/10.1016/j.eswa.2009.06.044
22 https://doi.org/10.1016/j.ijpe.2012.02.025
23 https://doi.org/10.1016/j.ijpe.2012.03.030
24 https://doi.org/10.1016/j.ijpe.2013.08.001
25 https://doi.org/10.1016/j.ijpe.2014.01.023
26 https://doi.org/10.1016/j.ijpe.2014.09.009
27 https://doi.org/10.1016/j.jmsy.2017.04.005
28 https://doi.org/10.1016/j.mcm.2012.07.002
29 https://doi.org/10.1016/j.omega.2012.03.002
30 https://doi.org/10.1016/j.scient.2012.10.040
31 https://doi.org/10.1016/j.tre.2015.07.008
32 https://doi.org/10.1051/ro/2016047
33 https://doi.org/10.1080/00207721.2013.807385
34 https://doi.org/10.1080/00207721.2014.891672
35 https://doi.org/10.1080/01605682.2017.1390524
36 https://doi.org/10.1080/13873954.2016.1150860
37 https://doi.org/10.1080/23302674.2014.946981
38 https://doi.org/10.1080/23307706.2015.1092099
39 https://doi.org/10.1109/4235.985692
40 https://doi.org/10.1109/cec.1999.785513
41 https://doi.org/10.1109/cec.2004.1330875
42 https://doi.org/10.1109/iccis.2004.1460396
43 https://doi.org/10.1111/itor.12297
44 https://doi.org/10.1137/1.9781611970906
45 https://doi.org/10.1142/s021759591750021x
46 https://doi.org/10.1504/ijbfmi.2017.084055
47 https://doi.org/10.1504/ijlsm.2017.083221
48 https://doi.org/10.1504/ijlsm.2019.097070
49 https://doi.org/10.1504/ijmor.2011.043015
50 https://doi.org/10.24200/sci.2017.4042
51 https://doi.org/10.3934/jimo.2016.12.1091
52 https://doi.org/10.5267/j.ijiec.2013.01.004
53 schema:datePublished 2019-03-12
54 schema:datePublishedReg 2019-03-12
55 schema:description Generally, most of the inventory costs are not always fixed due to uncertainty of competitive market. In the existing literature, it is found that several researchers have worked on uncertainty considering inventory parameters as fuzzy valued. In this work, we have represented the inventory parameters as interval. Using this concept, we have developed a two-warehouse inventory model with advanced payment, partial backlogged shortages. Due to uncertainty, this problem cannot be solved by existing direct/indirect optimization technique. For this purpose, different variants of particle swarm optimization techniques (viz. PSO-CO, WQPSO and GQPSO) have been developed to solve the problem of the proposed inventory model by using interval arithmetic and interval order relations. Finally, to illustrate and also to validate the proposed model, a numerical example has been solved and the best found solutions (which is either optimal solution or near optimal solution) obtained from different variants of PSO have been compared. Then, a sensitivity analysis has been performed to study the effect of changes of different parameters of the model on the optimal policy.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf sg:journal.1050238
60 schema:name A two-warehouse EOQ model with interval-valued inventory cost and advance payment for deteriorating item under particle swarm optimization
61 schema:pagination 1-16
62 schema:productId Nc51c47a228d94580ad98c9dac31f0ef6
63 Ne4ea4bf33d4e44aaba41766c15290150
64 Nf7f73685fd3848d5b967c721d07416ba
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703102
66 https://doi.org/10.1007/s00500-019-03890-y
67 schema:sdDatePublished 2019-04-11T11:47
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Na4f15add2aab43b1837815b72db92d83
70 schema:url https://link.springer.com/10.1007%2Fs00500-019-03890-y
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0c75a106419b443f9300a9b8ff24be16 rdf:first N4a4984bb42e14a6ca4e437f49adc5d69
75 rdf:rest rdf:nil
76 N1a859f32bb30458ca2f17c14c90d5fc3 schema:name Department of Mathematics, Mahavir Institute of Engineering and Technology, BBSR, Bhubaneswar, India
77 rdf:type schema:Organization
78 N252ab6e00c554be583ccd5fa004ce2fd rdf:first N81752785271548029e8b5a1bccb6a025
79 rdf:rest Na2adfc7dc237427692fdab094beac57e
80 N3e857ba866e04f2b88d966fae1ede532 schema:affiliation N1a859f32bb30458ca2f17c14c90d5fc3
81 schema:familyName Panda
82 schema:givenName Gobinda Chandra
83 rdf:type schema:Person
84 N4a4984bb42e14a6ca4e437f49adc5d69 schema:affiliation https://www.grid.ac/institutes/grid.411808.4
85 schema:familyName Al-Amin Khan
86 schema:givenName Md.
87 rdf:type schema:Person
88 N50c2fecdbb2e4f9097cbce64a363adde schema:affiliation N7c44a2199be74741a0a18ac49f08cd26
89 schema:familyName Das
90 schema:givenName Subhash Chandra
91 rdf:type schema:Person
92 N7c44a2199be74741a0a18ac49f08cd26 schema:name Department of Mathematics, Chandrapur College, 713145, Chandapur, Burdwan, India
93 rdf:type schema:Organization
94 N81752785271548029e8b5a1bccb6a025 schema:affiliation https://www.grid.ac/institutes/grid.411826.8
95 schema:familyName Bhunia
96 schema:givenName Asoke Kumar
97 rdf:type schema:Person
98 N83e0e373d2954d3398d97a7fc69cb747 rdf:first N50c2fecdbb2e4f9097cbce64a363adde
99 rdf:rest N252ab6e00c554be583ccd5fa004ce2fd
100 Na0222a29bfb4492697007d8eb9f6036a schema:affiliation https://www.grid.ac/institutes/grid.419886.a
101 schema:familyName Shaikh
102 schema:givenName Ali Akbar
103 rdf:type schema:Person
104 Na2adfc7dc237427692fdab094beac57e rdf:first N3e857ba866e04f2b88d966fae1ede532
105 rdf:rest N0c75a106419b443f9300a9b8ff24be16
106 Na4f15add2aab43b1837815b72db92d83 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nc51c47a228d94580ad98c9dac31f0ef6 schema:name readcube_id
109 schema:value 8ffc355c32ac8f90eb3983123f80930a413c9e287aa69ad67745a122a36af0fe
110 rdf:type schema:PropertyValue
111 Ne4ea4bf33d4e44aaba41766c15290150 schema:name doi
112 schema:value 10.1007/s00500-019-03890-y
113 rdf:type schema:PropertyValue
114 Nf7f73685fd3848d5b967c721d07416ba schema:name dimensions_id
115 schema:value pub.1112703102
116 rdf:type schema:PropertyValue
117 Nf8515715208c4fcc8bc6c3cf257d5a92 rdf:first Na0222a29bfb4492697007d8eb9f6036a
118 rdf:rest N83e0e373d2954d3398d97a7fc69cb747
119 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
120 schema:name Mathematical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
123 schema:name Numerical and Computational Mathematics
124 rdf:type schema:DefinedTerm
125 sg:journal.1050238 schema:issn 1432-7643
126 1433-7479
127 schema:name Soft Computing
128 rdf:type schema:Periodical
129 sg:pub.10.1007/s00170-010-2689-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048207666
130 https://doi.org/10.1007/s00170-010-2689-0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00521-017-3168-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091307998
133 https://doi.org/10.1007/s00521-017-3168-4
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10479-015-2100-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042531300
136 https://doi.org/10.1007/s10479-015-2100-5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10479-017-2492-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084518334
139 https://doi.org/10.1007/s10479-017-2492-5
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10479-017-2510-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085392875
142 https://doi.org/10.1007/s10479-017-2510-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11081-013-9223-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043629633
145 https://doi.org/10.1007/s11081-013-9223-9
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.amc.2014.12.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005779307
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.apm.2008.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032755840
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.apm.2010.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024996708
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.apm.2013.05.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001744591
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.apm.2014.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015978948
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.apm.2016.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037230749
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.asoc.2017.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083908247
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.cam.2008.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021989289
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.cie.2010.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044794715
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.cie.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009454677
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ejor.2010.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001081487
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.eswa.2009.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025512381
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijpe.2012.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519395
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijpe.2012.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014335269
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ijpe.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048974801
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijpe.2014.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051948045
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ijpe.2014.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010931972
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jmsy.2017.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092229532
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.mcm.2012.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048359097
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.omega.2012.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046306061
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.scient.2012.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004703775
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.tre.2015.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046726685
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1051/ro/2016047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057065852
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/00207721.2013.807385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031802195
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/00207721.2014.891672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024513453
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/01605682.2017.1390524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104595151
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1080/13873954.2016.1150860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259814
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1080/23302674.2014.946981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026947936
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1080/23307706.2015.1092099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005037813
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/4235.985692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172118
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/cec.1999.785513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093465497
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/cec.2004.1330875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093369569
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/iccis.2004.1460396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093362375
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/itor.12297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014370539
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1137/1.9781611970906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556260
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1142/s021759591750021x schema:sameAs https://app.dimensions.ai/details/publication/pub.1090511843
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1504/ijbfmi.2017.084055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085477146
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1504/ijlsm.2017.083221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084320566
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1504/ijlsm.2019.097070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110792386
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1504/ijmor.2011.043015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067477117
226 rdf:type schema:CreativeWork
227 https://doi.org/10.24200/sci.2017.4042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091254520
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3934/jimo.2016.12.1091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740308
230 rdf:type schema:CreativeWork
231 https://doi.org/10.5267/j.ijiec.2013.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072734161
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.411808.4 schema:alternateName Jahangirnagar University
234 schema:name Department of Mathematics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.411826.8 schema:alternateName University of Burdwan
237 schema:name Department of Mathematics, The University of Burdwan, 713104, Burdwan, India
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.419886.a schema:alternateName Monterrey Institute of Technology and Higher Education
240 schema:name Department of Mathematics, The University of Burdwan, 713104, Burdwan, India
241 School of Engineering and Sciences, Tecnológico de Monterrey, E. Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...