Application of a fuzzy unit hypercube in cardiovascular risk classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-30

AUTHORS

Geoffrey O. Barini, Livingstone M. Ngoo, Ronald W. Mwangi

ABSTRACT

Most standard cardiovascular disease (CVD) risk assessment models are based on traditional quantitative approaches. Such models oversimplify complex interactions emanating from the imprecise nature of CVD risk factors. As such, approaches that can handle uncertainty due to imprecision need to be explored. This study proposes a cardiovascular risk classification model based on the geometry of fuzzy sets, which allows for a multidimensional display of qualitative properties associated with risk attributes—that are defined in a fuzzy sense. Within this structure, a risk concept (which defines the degree of risk severity) is simply a continuum of points of the hypercube. Consequently, an individual’s risk status would naturally be represented by an ordered fuzzy within the continuum. This representation forms an excellent comparative framework through measures of similarity where an individual’s relative position in the continuum can be given as degrees of compatibility with the underlying risk concepts. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-019-03802-0

DOI

http://dx.doi.org/10.1007/s00500-019-03802-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111772954


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jomo Kenyatta University of Agriculture and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411943.a", 
          "name": [
            "Institute of Basic Sciences, Technology and Innovation, Pan African University, P. O Box 62000-00200, Nairobi, Kenya", 
            "Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P. O Box 62000-00200, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barini", 
        "givenName": "Geoffrey O.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Multimedia University of Kenya", 
          "id": "https://www.grid.ac/institutes/grid.449195.4", 
          "name": [
            "Department of Electrical and Telecommunication Engineering, Multimedia University of Kenya, P.O Box 15653- 00503, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ngoo", 
        "givenName": "Livingstone M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jomo Kenyatta University of Agriculture and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411943.a", 
          "name": [
            "Department of Computing, Jomo Kenyatta University of Agriculture and Technology, P. O Box 62000-00200, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mwangi", 
        "givenName": "Ronald W.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4471-0819-1_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001801941", 
          "https://doi.org/10.1007/978-1-4471-0819-1_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa041031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005610447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehi733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008813074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2261-6-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008867541", 
          "https://doi.org/10.1186/1471-2261-6-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-2260-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012295782", 
          "https://doi.org/10.1007/978-94-007-2260-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-2260-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012295782", 
          "https://doi.org/10.1007/978-94-007-2260-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0933-3657(99)00015-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013460305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.97.18.1837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013788536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artint.2016.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014745134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2014-305693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017980936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4258/hir.2015.21.3.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019043772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0933-3657(02)00080-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019521123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0933-3657(02)00080-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019521123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp1002024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020588340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(97)00149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023518466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10700-006-0020-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023819860", 
          "https://doi.org/10.1007/s10700-006-0020-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22555-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025471559", 
          "https://doi.org/10.1007/978-3-642-22555-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22555-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025471559", 
          "https://doi.org/10.1007/978-3-642-22555-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1157/13116658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026003458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2012.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031173312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037084752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037084752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(91)90861-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040156463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jksuci.2011.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041393117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1885-5857(08)60118-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041757254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1012848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043642136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079008935108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044910063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijdmmm.2010.035565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067446480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijdsrm.2011.040749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067446814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.16.2.434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070745939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0037-1613189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075112789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078920198", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12553-017-0178-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083537405", 
          "https://doi.org/10.1007/s12553-017-0178-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12553-017-0178-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083537405", 
          "https://doi.org/10.1007/s12553-017-0178-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2017.04.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085433046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2017.03.571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085564652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jval.2017.08.443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092321011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsima.2015.7559009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094505233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2002.1187512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095059106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mfi.1994.398422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095385140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/neurel.2000.902386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095755092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10916-018-0892-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100465290", 
          "https://doi.org/10.1007/s10916-018-0892-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3185089.3185118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104048467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3185089.3185118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104048467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icecds.2017.8390044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105033684"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-30", 
    "datePublishedReg": "2019-01-30", 
    "description": "Most standard cardiovascular disease (CVD) risk assessment models are based on traditional quantitative approaches. Such models oversimplify complex interactions emanating from the imprecise nature of CVD risk factors. As such, approaches that can handle uncertainty due to imprecision need to be explored. This study proposes a cardiovascular risk classification model based on the geometry of fuzzy sets, which allows for a multidimensional display of qualitative properties associated with risk attributes\u2014that are defined in a fuzzy sense. Within this structure, a risk concept (which defines the degree of risk severity) is simply a continuum of points of the hypercube. Consequently, an individual\u2019s risk status would naturally be represented by an ordered fuzzy within the continuum. This representation forms an excellent comparative framework through measures of similarity where an individual\u2019s relative position in the continuum can be given as degrees of compatibility with the underlying risk concepts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-019-03802-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Application of a fuzzy unit hypercube in cardiovascular risk classification", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f72d6671a7a8bdb18d90c76d82cfa899f71b3f30f60802aa532c357813232c5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-019-03802-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111772954"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-019-03802-0", 
      "https://app.dimensions.ai/details/publication/pub.1111772954"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_115001_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-019-03802-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03802-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03802-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03802-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-019-03802-0'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-019-03802-0 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N43bce95a5f684aef8f557451b1e363ed
4 schema:citation sg:pub.10.1007/978-1-4471-0819-1_22
5 sg:pub.10.1007/978-3-642-22555-0_13
6 sg:pub.10.1007/978-94-007-2260-6
7 sg:pub.10.1007/s10700-006-0020-1
8 sg:pub.10.1007/s10916-018-0892-y
9 sg:pub.10.1007/s12553-017-0178-2
10 sg:pub.10.1186/1471-2261-6-20
11 https://app.dimensions.ai/details/publication/pub.1078920198
12 https://doi.org/10.1016/0002-8703(91)90861-b
13 https://doi.org/10.1016/j.artint.2016.04.008
14 https://doi.org/10.1016/j.jacc.2012.11.018
15 https://doi.org/10.1016/j.jacc.2017.03.571
16 https://doi.org/10.1016/j.jacc.2017.04.052
17 https://doi.org/10.1016/j.jksuci.2011.09.002
18 https://doi.org/10.1016/j.jval.2017.08.443
19 https://doi.org/10.1016/s0019-9958(65)90241-x
20 https://doi.org/10.1016/s0893-6080(97)00149-4
21 https://doi.org/10.1016/s0933-3657(02)00080-5
22 https://doi.org/10.1016/s0933-3657(99)00015-9
23 https://doi.org/10.1016/s1885-5857(08)60118-8
24 https://doi.org/10.1055/s-0037-1613189
25 https://doi.org/10.1056/nejmoa041031
26 https://doi.org/10.1056/nejmoa1012848
27 https://doi.org/10.1056/nejmp1002024
28 https://doi.org/10.1080/03081079008935108
29 https://doi.org/10.1093/eurheartj/ehi733
30 https://doi.org/10.1109/icecds.2017.8390044
31 https://doi.org/10.1109/icsima.2015.7559009
32 https://doi.org/10.1109/iecon.2002.1187512
33 https://doi.org/10.1109/mfi.1994.398422
34 https://doi.org/10.1109/neurel.2000.902386
35 https://doi.org/10.1136/heartjnl-2014-305693
36 https://doi.org/10.1145/3185089.3185118
37 https://doi.org/10.1157/13116658
38 https://doi.org/10.1161/01.cir.97.18.1837
39 https://doi.org/10.1161/cir.0000000000000350
40 https://doi.org/10.1504/ijdmmm.2010.035565
41 https://doi.org/10.1504/ijdsrm.2011.040749
42 https://doi.org/10.2337/diacare.16.2.434
43 https://doi.org/10.4258/hir.2015.21.3.167
44 schema:datePublished 2019-01-30
45 schema:datePublishedReg 2019-01-30
46 schema:description Most standard cardiovascular disease (CVD) risk assessment models are based on traditional quantitative approaches. Such models oversimplify complex interactions emanating from the imprecise nature of CVD risk factors. As such, approaches that can handle uncertainty due to imprecision need to be explored. This study proposes a cardiovascular risk classification model based on the geometry of fuzzy sets, which allows for a multidimensional display of qualitative properties associated with risk attributes—that are defined in a fuzzy sense. Within this structure, a risk concept (which defines the degree of risk severity) is simply a continuum of points of the hypercube. Consequently, an individual’s risk status would naturally be represented by an ordered fuzzy within the continuum. This representation forms an excellent comparative framework through measures of similarity where an individual’s relative position in the continuum can be given as degrees of compatibility with the underlying risk concepts.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1050238
51 schema:name Application of a fuzzy unit hypercube in cardiovascular risk classification
52 schema:pagination 1-7
53 schema:productId N660e97305cd34d1c817c4ce4c7c9af37
54 N872de5d58aaa4aeb95445242aeb5093e
55 Nda010afdb8ac4aa5a9a5e2457ed7de62
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111772954
57 https://doi.org/10.1007/s00500-019-03802-0
58 schema:sdDatePublished 2019-04-11T09:00
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nd7348fc326e347ad8f83b5988df70c2e
61 schema:url https://link.springer.com/10.1007%2Fs00500-019-03802-0
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N3592105eb7b84c3b8bf596a990fc0307 rdf:first Ndf7ffa6512564c6795bbdf3c82d5edd9
66 rdf:rest N54904f6697fd4a31a6f12ece973cbda2
67 N43bce95a5f684aef8f557451b1e363ed rdf:first N49ba6fc27bb245d5a3074e331533d972
68 rdf:rest N3592105eb7b84c3b8bf596a990fc0307
69 N49ba6fc27bb245d5a3074e331533d972 schema:affiliation https://www.grid.ac/institutes/grid.411943.a
70 schema:familyName Barini
71 schema:givenName Geoffrey O.
72 rdf:type schema:Person
73 N54904f6697fd4a31a6f12ece973cbda2 rdf:first N62fd4ae61334499ba50344f861e26f6d
74 rdf:rest rdf:nil
75 N62fd4ae61334499ba50344f861e26f6d schema:affiliation https://www.grid.ac/institutes/grid.411943.a
76 schema:familyName Mwangi
77 schema:givenName Ronald W.
78 rdf:type schema:Person
79 N660e97305cd34d1c817c4ce4c7c9af37 schema:name doi
80 schema:value 10.1007/s00500-019-03802-0
81 rdf:type schema:PropertyValue
82 N872de5d58aaa4aeb95445242aeb5093e schema:name dimensions_id
83 schema:value pub.1111772954
84 rdf:type schema:PropertyValue
85 Nd7348fc326e347ad8f83b5988df70c2e schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nda010afdb8ac4aa5a9a5e2457ed7de62 schema:name readcube_id
88 schema:value 4f72d6671a7a8bdb18d90c76d82cfa899f71b3f30f60802aa532c357813232c5
89 rdf:type schema:PropertyValue
90 Ndf7ffa6512564c6795bbdf3c82d5edd9 schema:affiliation https://www.grid.ac/institutes/grid.449195.4
91 schema:familyName Ngoo
92 schema:givenName Livingstone M.
93 rdf:type schema:Person
94 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
95 schema:name Medical and Health Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
98 schema:name Public Health and Health Services
99 rdf:type schema:DefinedTerm
100 sg:journal.1050238 schema:issn 1432-7643
101 1433-7479
102 schema:name Soft Computing
103 rdf:type schema:Periodical
104 sg:pub.10.1007/978-1-4471-0819-1_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001801941
105 https://doi.org/10.1007/978-1-4471-0819-1_22
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-642-22555-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025471559
108 https://doi.org/10.1007/978-3-642-22555-0_13
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-94-007-2260-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012295782
111 https://doi.org/10.1007/978-94-007-2260-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10700-006-0020-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023819860
114 https://doi.org/10.1007/s10700-006-0020-1
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10916-018-0892-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1100465290
117 https://doi.org/10.1007/s10916-018-0892-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s12553-017-0178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083537405
120 https://doi.org/10.1007/s12553-017-0178-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1471-2261-6-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008867541
123 https://doi.org/10.1186/1471-2261-6-20
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1078920198 schema:CreativeWork
126 https://doi.org/10.1016/0002-8703(91)90861-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1040156463
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.artint.2016.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014745134
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jacc.2012.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031173312
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jacc.2017.03.571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085564652
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jacc.2017.04.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085433046
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jksuci.2011.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041393117
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jval.2017.08.443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092321011
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0893-6080(97)00149-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023518466
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0933-3657(02)00080-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019521123
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0933-3657(99)00015-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013460305
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s1885-5857(08)60118-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041757254
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1055/s-0037-1613189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075112789
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1056/nejmoa041031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005610447
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1056/nejmoa1012848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043642136
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1056/nejmp1002024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020588340
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/03081079008935108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044910063
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/eurheartj/ehi733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008813074
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/icecds.2017.8390044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105033684
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/icsima.2015.7559009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094505233
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/iecon.2002.1187512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095059106
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/mfi.1994.398422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095385140
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/neurel.2000.902386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095755092
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1136/heartjnl-2014-305693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017980936
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1145/3185089.3185118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104048467
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1157/13116658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026003458
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1161/01.cir.97.18.1837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013788536
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1161/cir.0000000000000350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037084752
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1504/ijdmmm.2010.035565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067446480
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1504/ijdsrm.2011.040749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067446814
185 rdf:type schema:CreativeWork
186 https://doi.org/10.2337/diacare.16.2.434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070745939
187 rdf:type schema:CreativeWork
188 https://doi.org/10.4258/hir.2015.21.3.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019043772
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.411943.a schema:alternateName Jomo Kenyatta University of Agriculture and Technology
191 schema:name Department of Computing, Jomo Kenyatta University of Agriculture and Technology, P. O Box 62000-00200, Nairobi, Kenya
192 Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P. O Box 62000-00200, Nairobi, Kenya
193 Institute of Basic Sciences, Technology and Innovation, Pan African University, P. O Box 62000-00200, Nairobi, Kenya
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.449195.4 schema:alternateName Multimedia University of Kenya
196 schema:name Department of Electrical and Telecommunication Engineering, Multimedia University of Kenya, P.O Box 15653- 00503, Nairobi, Kenya
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...