Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-28

AUTHORS

Mohammadreza Koopialipoor, Danial Jahed Armaghani, Ahmadreza Hedayat, Aminaton Marto, Behrouz Gordan

ABSTRACT

The evaluation and precise prediction of safety factor (SF) of slopes can be useful in designing/analyzing these important structures. In this study, an attempt has been made to evaluate/predict SF of many homogenous slopes in static and dynamic conditions through applying various hybrid intelligent systems namely imperialist competitive algorithm (ICA)-artificial neural network (ANN), genetic algorithm (GA)-ANN, particle swarm optimization (PSO)-ANN and artificial bee colony (ABC)-ANN. In fact, ICA, PSO, GA and ABC were used to adjust weights and biases of ANN model. In order to achieve the aim of this study, a database composed of 699 datasets with 5 model inputs including slope gradient, slope height, friction angle of soil, soil cohesion and peak ground acceleration and one output (SF) was established. Several parametric investigations were conducted in order to determine the most effective factors of GA, ICA, ABC and PSO algorithms. The obtained results of hybrid models were check considering two performance indices, i.e., root-mean-square error and coefficient of determination (R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R^{2})$$\end{document}. To evaluate capability of all hybrid models, a new system of ranking, i.e., the color intensity rating, was developed. As a result, although all predictive models are able to approximate slope SF values, PSO-ANN predictive model can perform better compared to others. Based on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}$$\end{document}, values of (0.969, 0.957, 0.980 and 0.920) were found for testing of ICA-ANN, ABC-ANN, PSO-ANN and GA-ANN predictive models, respectively, which show higher efficiency of the PSO-ANN model in predicting slope SF values. More... »

PAGES

5913-5929

References to SciGraph publications

  • 2016-06-17. Application of PSO to develop a powerful equation for prediction of flyrock due to blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2007-06-12. An Example of Artificial Neural Network (ANN) Application for Indirect Estimation of Rock Parameters in ROCK MECHANICS AND ROCK ENGINEERING
  • 2015-12-18. Prediction of Drillability of Rocks with Strength Properties Using a Hybrid GA-ANN Technique in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2011-01-22. Classification of slopes and prediction of factor of safety using differential evolution neural networks in ENVIRONMENTAL EARTH SCIENCES
  • 2015-10-31. Several non-linear models in estimating air-overpressure resulting from mine blasting in ENGINEERING WITH COMPUTERS
  • 2005-08. A study of slope stability prediction using neural networks in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2015-10-04. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2016-12-21. Rock strength estimation: a PSO-based BP approach in NEURAL COMPUTING AND APPLICATIONS
  • 2016-03-29. The Application of Artificial Bee Colony and Gravitational Search Algorithm in Reservoir Optimization in WATER RESOURCES MANAGEMENT
  • 2016-05-25. Risk Assessment and Prediction of Flyrock Distance by Combined Multiple Regression Analysis and Monte Carlo Simulation of Quarry Blasting in ROCK MECHANICS AND ROCK ENGINEERING
  • 2017-07-01. A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2009-02-05. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran) in ARABIAN JOURNAL OF GEOSCIENCES
  • 2016-11-24. A New Model for Determining Slope Stability Based on Seismic Motion Performance in SOIL MECHANICS AND FOUNDATION ENGINEERING
  • 2016-05-26. An optimized ANN model based on genetic algorithm for predicting ripping production in NEURAL COMPUTING AND APPLICATIONS
  • 2014-07-10. Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2016-09-14. Airblast prediction through a hybrid genetic algorithm-ANN model in NEURAL COMPUTING AND APPLICATIONS
  • 2010-08-11. Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach in ARABIAN JOURNAL OF GEOSCIENCES
  • 1943-12. A logical calculus of the ideas immanent in nervous activity in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2017-01-19. A Monte Carlo technique in safety assessment of slope under seismic condition in ENGINEERING WITH COMPUTERS
  • 2007-04-13. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm in JOURNAL OF GLOBAL OPTIMIZATION
  • 2006-11. Investigation of soil parameters affecting the stability of homogeneous slopes using the Taguchi method in EURASIAN SOIL SCIENCE
  • 2015-09-12. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting in ENGINEERING WITH COMPUTERS
  • 2012. An Artificial Bee Colony Algorithm for the Unrelated Parallel Machines Scheduling Problem in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XII
  • 2016-08-08. Estimation of ground vibration produced by blasting operations through intelligent and empirical models in ENVIRONMENTAL EARTH SCIENCES
  • 2018-03-03. Three hybrid intelligent models in estimating flyrock distance resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2016-03-28. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling in ENGINEERING WITH COMPUTERS
  • 2015-01-30. Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2015-10-14. Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles in NEURAL COMPUTING AND APPLICATIONS
  • 2015-02-18. Prediction of seismic slope stability through combination of particle swarm optimization and neural network in ENGINEERING WITH COMPUTERS
  • 2016-11-29. Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2015-06-18. A combination of the ICA-ANN model to predict air-overpressure resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2014-09-04. Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2015-05-20. Application of fuzzy inference system for prediction of rock fragmentation induced by blasting in ARABIAN JOURNAL OF GEOSCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00500-018-3253-3

    DOI

    http://dx.doi.org/10.1007/s00500-018-3253-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104266062


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Mining and Metallurgy, Amirkabir University of Technology, 15914, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Mining and Metallurgy, Amirkabir University of Technology, 15914, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koopialipoor", 
            "givenName": "Mohammadreza", 
            "id": "sg:person.012061617153.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061617153.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Engineering and Green Technology Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran", 
                "Environmental Engineering and Green Technology Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jahed Armaghani", 
            "givenName": "Danial", 
            "id": "sg:person.012214152011.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Civil and Environmental Engineering, Colorado School of Mines, 80401, Golden, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.254549.b", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hedayat", 
            "givenName": "Ahmadreza", 
            "id": "sg:person.011044404222.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044404222.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Engineering and Green Technology Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Environmental Engineering and Green Technology Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marto", 
            "givenName": "Aminaton", 
            "id": "sg:person.01200512774.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200512774.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordan", 
            "givenName": "Behrouz", 
            "id": "sg:person.014561312544.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014561312544.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00603-016-1015-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033227644", 
              "https://doi.org/10.1007/s00603-016-1015-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0596-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101330868", 
              "https://doi.org/10.1007/s00366-018-0596-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0657-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016555821", 
              "https://doi.org/10.1007/s10064-014-0657-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0638-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012839375", 
              "https://doi.org/10.1007/s10064-014-0638-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2728-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015743528", 
              "https://doi.org/10.1007/s00521-016-2728-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-004-8680-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053172455", 
              "https://doi.org/10.1007/s10706-004-8680-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-015-2072-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023467671", 
              "https://doi.org/10.1007/s00521-015-2072-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0400-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003281017", 
              "https://doi.org/10.1007/s00366-015-0400-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-010-0185-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044029557", 
              "https://doi.org/10.1007/s12517-010-0185-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-007-9149-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049543869", 
              "https://doi.org/10.1007/s10898-007-9149-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0415-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006981814", 
              "https://doi.org/10.1007/s00366-015-0415-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-009-0035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018402843", 
              "https://doi.org/10.1007/s12517-009-0035-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-016-0983-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040641339", 
              "https://doi.org/10.1007/s10064-016-0983-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-1952-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029920407", 
              "https://doi.org/10.1007/s12517-015-1952-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0425-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007184144", 
              "https://doi.org/10.1007/s00366-015-0425-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028715170", 
              "https://doi.org/10.1007/bf02478259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-007-0138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024289044", 
              "https://doi.org/10.1007/s00603-007-0138-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-5961-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033976282", 
              "https://doi.org/10.1007/s12665-016-5961-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2434-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009507452", 
              "https://doi.org/10.1007/s00521-016-2434-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-016-1304-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000974137", 
              "https://doi.org/10.1007/s11269-016-1304-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0499-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053868780", 
              "https://doi.org/10.1007/s00366-016-0499-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32964-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001473417", 
              "https://doi.org/10.1007/978-3-642-32964-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1064229306110135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008327528", 
              "https://doi.org/10.1134/s1064229306110135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-015-4895-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012955740", 
              "https://doi.org/10.1007/s10661-015-4895-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030807144", 
              "https://doi.org/10.1007/s00366-016-0447-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2598-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042598741", 
              "https://doi.org/10.1007/s00521-016-2598-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-015-0720-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042960605", 
              "https://doi.org/10.1007/s10064-015-0720-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0408-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031058347", 
              "https://doi.org/10.1007/s00366-015-0408-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-010-0839-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011395582", 
              "https://doi.org/10.1007/s12665-010-0839-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2359-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007611346", 
              "https://doi.org/10.1007/s00521-016-2359-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11204-016-9409-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031752831", 
              "https://doi.org/10.1007/s11204-016-9409-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-015-9970-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034231673", 
              "https://doi.org/10.1007/s10706-015-9970-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05-28", 
        "datePublishedReg": "2018-05-28", 
        "description": "The evaluation and precise prediction of safety factor (SF) of slopes can be useful in designing/analyzing these important structures. In this study, an attempt has been made to evaluate/predict SF of many homogenous slopes in static and dynamic conditions through applying various hybrid intelligent systems namely imperialist competitive algorithm (ICA)-artificial neural network (ANN), genetic algorithm (GA)-ANN, particle swarm optimization (PSO)-ANN and artificial bee colony (ABC)-ANN. In fact, ICA, PSO, GA and ABC were used to adjust weights and biases of ANN model. In order to achieve the aim of this study, a database composed of 699 datasets with 5 model inputs including slope gradient, slope height, friction angle of soil, soil cohesion and peak ground acceleration and one output (SF) was established. Several parametric investigations were conducted in order to determine the most effective factors of GA, ICA, ABC and PSO algorithms. The obtained results of hybrid models were check considering two performance indices, i.e., root-mean-square error and coefficient of determination (R2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(R^{2})$$\\end{document}. To evaluate capability of all hybrid models, a new system of ranking, i.e., the color intensity rating, was developed. As a result, although all predictive models are able to approximate slope SF values, PSO-ANN predictive model can perform better compared to others. Based on R2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R^{2}$$\\end{document}, values of (0.969, 0.957, 0.980 and 0.920) were found for testing of ICA-ANN, ABC-ANN, PSO-ANN and GA-ANN predictive models, respectively, which show higher efficiency of the PSO-ANN model in predicting slope SF values.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00500-018-3253-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050238", 
            "issn": [
              "1432-7643", 
              "1433-7479"
            ], 
            "name": "Soft Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "14", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "hybrid intelligent system", 
          "intelligent systems", 
          "ABC-ANN", 
          "PSO-ANN model", 
          "Artificial Bee Colony", 
          "ICA-ANN", 
          "PSO-ANN", 
          "particle swarm optimization", 
          "hybrid model", 
          "neural network", 
          "color intensity rating", 
          "competitive algorithm", 
          "ANN model", 
          "swarm optimization", 
          "genetic algorithm", 
          "PSO algorithm", 
          "predictive model", 
          "algorithm", 
          "bee colonies", 
          "square error", 
          "new system", 
          "performance index", 
          "system", 
          "PSO", 
          "datasets", 
          "network", 
          "model inputs", 
          "dynamic conditions", 
          "capability", 
          "database", 
          "model", 
          "precise prediction", 
          "high efficiency", 
          "optimization", 
          "homogenous slopes", 
          "ICA", 
          "ranking", 
          "order", 
          "error", 
          "input", 
          "check", 
          "important structures", 
          "ABC", 
          "coefficient of determination", 
          "efficiency", 
          "output", 
          "results", 
          "prediction", 
          "evaluation", 
          "effective factors", 
          "acceleration", 
          "testing", 
          "fact", 
          "values", 
          "ratings", 
          "structure", 
          "SF values", 
          "attempt", 
          "peak ground acceleration", 
          "coefficient", 
          "safety factor", 
          "biases", 
          "conditions", 
          "weight", 
          "angle", 
          "cohesion", 
          "ground acceleration", 
          "aim", 
          "gradient", 
          "study", 
          "index", 
          "factors", 
          "slope height", 
          "slope stability", 
          "stability", 
          "parametric investigation", 
          "friction angle", 
          "investigation", 
          "colonies", 
          "soil cohesion", 
          "determination", 
          "height", 
          "gas", 
          "slope gradient", 
          "slope", 
          "soil", 
          "intensity ratings", 
          "slope SF values", 
          "PSO-ANN predictive model", 
          "GA-ANN predictive models"
        ], 
        "name": "Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions", 
        "pagination": "5913-5929", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104266062"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00500-018-3253-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00500-018-3253-3", 
          "https://app.dimensions.ai/details/publication/pub.1104266062"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_781.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00500-018-3253-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3253-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3253-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3253-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3253-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    317 TRIPLES      22 PREDICATES      148 URIs      107 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00500-018-3253-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4493412adee14a09be15a2615782e007
    4 schema:citation sg:pub.10.1007/978-3-642-32964-7_15
    5 sg:pub.10.1007/bf02478259
    6 sg:pub.10.1007/s00366-015-0400-7
    7 sg:pub.10.1007/s00366-015-0408-z
    8 sg:pub.10.1007/s00366-015-0415-0
    9 sg:pub.10.1007/s00366-015-0425-y
    10 sg:pub.10.1007/s00366-016-0447-0
    11 sg:pub.10.1007/s00366-016-0499-1
    12 sg:pub.10.1007/s00366-018-0596-4
    13 sg:pub.10.1007/s00521-015-2072-z
    14 sg:pub.10.1007/s00521-016-2359-8
    15 sg:pub.10.1007/s00521-016-2434-1
    16 sg:pub.10.1007/s00521-016-2598-8
    17 sg:pub.10.1007/s00521-016-2728-3
    18 sg:pub.10.1007/s00603-007-0138-7
    19 sg:pub.10.1007/s00603-016-1015-z
    20 sg:pub.10.1007/s10064-014-0638-0
    21 sg:pub.10.1007/s10064-014-0657-x
    22 sg:pub.10.1007/s10064-015-0720-2
    23 sg:pub.10.1007/s10064-016-0983-2
    24 sg:pub.10.1007/s10064-017-1116-2
    25 sg:pub.10.1007/s10661-015-4895-6
    26 sg:pub.10.1007/s10706-004-8680-5
    27 sg:pub.10.1007/s10706-015-9970-9
    28 sg:pub.10.1007/s10898-007-9149-x
    29 sg:pub.10.1007/s11204-016-9409-1
    30 sg:pub.10.1007/s11269-016-1304-z
    31 sg:pub.10.1007/s12517-009-0035-3
    32 sg:pub.10.1007/s12517-010-0185-3
    33 sg:pub.10.1007/s12517-015-1952-y
    34 sg:pub.10.1007/s12665-010-0839-1
    35 sg:pub.10.1007/s12665-016-5961-2
    36 sg:pub.10.1134/s1064229306110135
    37 schema:datePublished 2018-05-28
    38 schema:datePublishedReg 2018-05-28
    39 schema:description The evaluation and precise prediction of safety factor (SF) of slopes can be useful in designing/analyzing these important structures. In this study, an attempt has been made to evaluate/predict SF of many homogenous slopes in static and dynamic conditions through applying various hybrid intelligent systems namely imperialist competitive algorithm (ICA)-artificial neural network (ANN), genetic algorithm (GA)-ANN, particle swarm optimization (PSO)-ANN and artificial bee colony (ABC)-ANN. In fact, ICA, PSO, GA and ABC were used to adjust weights and biases of ANN model. In order to achieve the aim of this study, a database composed of 699 datasets with 5 model inputs including slope gradient, slope height, friction angle of soil, soil cohesion and peak ground acceleration and one output (SF) was established. Several parametric investigations were conducted in order to determine the most effective factors of GA, ICA, ABC and PSO algorithms. The obtained results of hybrid models were check considering two performance indices, i.e., root-mean-square error and coefficient of determination (R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R^{2})$$\end{document}. To evaluate capability of all hybrid models, a new system of ranking, i.e., the color intensity rating, was developed. As a result, although all predictive models are able to approximate slope SF values, PSO-ANN predictive model can perform better compared to others. Based on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}$$\end{document}, values of (0.969, 0.957, 0.980 and 0.920) were found for testing of ICA-ANN, ABC-ANN, PSO-ANN and GA-ANN predictive models, respectively, which show higher efficiency of the PSO-ANN model in predicting slope SF values.
    40 schema:genre article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N758898a1c1c0446c96e473ef9dff4c33
    44 Nd424c3d286ea481ea30af6990955a14d
    45 sg:journal.1050238
    46 schema:keywords ABC
    47 ABC-ANN
    48 ANN model
    49 Artificial Bee Colony
    50 GA-ANN predictive models
    51 ICA
    52 ICA-ANN
    53 PSO
    54 PSO algorithm
    55 PSO-ANN
    56 PSO-ANN model
    57 PSO-ANN predictive model
    58 SF values
    59 acceleration
    60 aim
    61 algorithm
    62 angle
    63 attempt
    64 bee colonies
    65 biases
    66 capability
    67 check
    68 coefficient
    69 coefficient of determination
    70 cohesion
    71 colonies
    72 color intensity rating
    73 competitive algorithm
    74 conditions
    75 database
    76 datasets
    77 determination
    78 dynamic conditions
    79 effective factors
    80 efficiency
    81 error
    82 evaluation
    83 fact
    84 factors
    85 friction angle
    86 gas
    87 genetic algorithm
    88 gradient
    89 ground acceleration
    90 height
    91 high efficiency
    92 homogenous slopes
    93 hybrid intelligent system
    94 hybrid model
    95 important structures
    96 index
    97 input
    98 intelligent systems
    99 intensity ratings
    100 investigation
    101 model
    102 model inputs
    103 network
    104 neural network
    105 new system
    106 optimization
    107 order
    108 output
    109 parametric investigation
    110 particle swarm optimization
    111 peak ground acceleration
    112 performance index
    113 precise prediction
    114 prediction
    115 predictive model
    116 ranking
    117 ratings
    118 results
    119 safety factor
    120 slope
    121 slope SF values
    122 slope gradient
    123 slope height
    124 slope stability
    125 soil
    126 soil cohesion
    127 square error
    128 stability
    129 structure
    130 study
    131 swarm optimization
    132 system
    133 testing
    134 values
    135 weight
    136 schema:name Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
    137 schema:pagination 5913-5929
    138 schema:productId N840238b1c1f64672a97e2c2499dd0fd7
    139 Nf6efbffa83414d8f84d436a395bcc111
    140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104266062
    141 https://doi.org/10.1007/s00500-018-3253-3
    142 schema:sdDatePublished 2021-11-01T18:33
    143 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    144 schema:sdPublisher N3c116d236f5a470ca9f322d782ed41f5
    145 schema:url https://doi.org/10.1007/s00500-018-3253-3
    146 sgo:license sg:explorer/license/
    147 sgo:sdDataset articles
    148 rdf:type schema:ScholarlyArticle
    149 N091163493c154f67999f2f28705ab877 rdf:first sg:person.014561312544.73
    150 rdf:rest rdf:nil
    151 N3c116d236f5a470ca9f322d782ed41f5 schema:name Springer Nature - SN SciGraph project
    152 rdf:type schema:Organization
    153 N4493412adee14a09be15a2615782e007 rdf:first sg:person.012061617153.66
    154 rdf:rest Nae24c1066aad471faf96a950069abd04
    155 N474732d1fb174deeb7a77a9056470d6b rdf:first sg:person.011044404222.15
    156 rdf:rest Ne80fdf79247b48f5be8cd46df207a72d
    157 N758898a1c1c0446c96e473ef9dff4c33 schema:issueNumber 14
    158 rdf:type schema:PublicationIssue
    159 N840238b1c1f64672a97e2c2499dd0fd7 schema:name doi
    160 schema:value 10.1007/s00500-018-3253-3
    161 rdf:type schema:PropertyValue
    162 Nae24c1066aad471faf96a950069abd04 rdf:first sg:person.012214152011.74
    163 rdf:rest N474732d1fb174deeb7a77a9056470d6b
    164 Nd424c3d286ea481ea30af6990955a14d schema:volumeNumber 23
    165 rdf:type schema:PublicationVolume
    166 Ne80fdf79247b48f5be8cd46df207a72d rdf:first sg:person.01200512774.84
    167 rdf:rest N091163493c154f67999f2f28705ab877
    168 Nf6efbffa83414d8f84d436a395bcc111 schema:name dimensions_id
    169 schema:value pub.1104266062
    170 rdf:type schema:PropertyValue
    171 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Information and Computing Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Artificial Intelligence and Image Processing
    176 rdf:type schema:DefinedTerm
    177 sg:journal.1050238 schema:issn 1432-7643
    178 1433-7479
    179 schema:name Soft Computing
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.011044404222.15 schema:affiliation grid-institutes:grid.254549.b
    183 schema:familyName Hedayat
    184 schema:givenName Ahmadreza
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044404222.15
    186 rdf:type schema:Person
    187 sg:person.01200512774.84 schema:affiliation grid-institutes:grid.410877.d
    188 schema:familyName Marto
    189 schema:givenName Aminaton
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200512774.84
    191 rdf:type schema:Person
    192 sg:person.012061617153.66 schema:affiliation grid-institutes:grid.411368.9
    193 schema:familyName Koopialipoor
    194 schema:givenName Mohammadreza
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061617153.66
    196 rdf:type schema:Person
    197 sg:person.012214152011.74 schema:affiliation grid-institutes:grid.410877.d
    198 schema:familyName Jahed Armaghani
    199 schema:givenName Danial
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74
    201 rdf:type schema:Person
    202 sg:person.014561312544.73 schema:affiliation grid-institutes:grid.410877.d
    203 schema:familyName Gordan
    204 schema:givenName Behrouz
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014561312544.73
    206 rdf:type schema:Person
    207 sg:pub.10.1007/978-3-642-32964-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001473417
    208 https://doi.org/10.1007/978-3-642-32964-7_15
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
    211 https://doi.org/10.1007/bf02478259
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00366-015-0400-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003281017
    214 https://doi.org/10.1007/s00366-015-0400-7
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00366-015-0408-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031058347
    217 https://doi.org/10.1007/s00366-015-0408-z
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s00366-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006981814
    220 https://doi.org/10.1007/s00366-015-0415-0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00366-015-0425-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007184144
    223 https://doi.org/10.1007/s00366-015-0425-y
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00366-016-0447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030807144
    226 https://doi.org/10.1007/s00366-016-0447-0
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00366-016-0499-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053868780
    229 https://doi.org/10.1007/s00366-016-0499-1
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00366-018-0596-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101330868
    232 https://doi.org/10.1007/s00366-018-0596-4
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s00521-015-2072-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023467671
    235 https://doi.org/10.1007/s00521-015-2072-z
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00521-016-2359-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007611346
    238 https://doi.org/10.1007/s00521-016-2359-8
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00521-016-2434-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507452
    241 https://doi.org/10.1007/s00521-016-2434-1
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s00521-016-2598-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042598741
    244 https://doi.org/10.1007/s00521-016-2598-8
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s00521-016-2728-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743528
    247 https://doi.org/10.1007/s00521-016-2728-3
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s00603-007-0138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024289044
    250 https://doi.org/10.1007/s00603-007-0138-7
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s00603-016-1015-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033227644
    253 https://doi.org/10.1007/s00603-016-1015-z
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s10064-014-0638-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012839375
    256 https://doi.org/10.1007/s10064-014-0638-0
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s10064-014-0657-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016555821
    259 https://doi.org/10.1007/s10064-014-0657-x
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s10064-015-0720-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042960605
    262 https://doi.org/10.1007/s10064-015-0720-2
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s10064-016-0983-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040641339
    265 https://doi.org/10.1007/s10064-016-0983-2
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s10064-017-1116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090314294
    268 https://doi.org/10.1007/s10064-017-1116-2
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s10661-015-4895-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012955740
    271 https://doi.org/10.1007/s10661-015-4895-6
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s10706-004-8680-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172455
    274 https://doi.org/10.1007/s10706-004-8680-5
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s10706-015-9970-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034231673
    277 https://doi.org/10.1007/s10706-015-9970-9
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s10898-007-9149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049543869
    280 https://doi.org/10.1007/s10898-007-9149-x
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s11204-016-9409-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031752831
    283 https://doi.org/10.1007/s11204-016-9409-1
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s11269-016-1304-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000974137
    286 https://doi.org/10.1007/s11269-016-1304-z
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s12517-009-0035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018402843
    289 https://doi.org/10.1007/s12517-009-0035-3
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/s12517-010-0185-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044029557
    292 https://doi.org/10.1007/s12517-010-0185-3
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s12517-015-1952-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029920407
    295 https://doi.org/10.1007/s12517-015-1952-y
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1007/s12665-010-0839-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011395582
    298 https://doi.org/10.1007/s12665-010-0839-1
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s12665-016-5961-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033976282
    301 https://doi.org/10.1007/s12665-016-5961-2
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1134/s1064229306110135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008327528
    304 https://doi.org/10.1134/s1064229306110135
    305 rdf:type schema:CreativeWork
    306 grid-institutes:grid.254549.b schema:alternateName Faculty of Civil and Environmental Engineering, Colorado School of Mines, 80401, Golden, CO, USA
    307 schema:name Faculty of Civil and Environmental Engineering, Colorado School of Mines, 80401, Golden, CO, USA
    308 rdf:type schema:Organization
    309 grid-institutes:grid.410877.d schema:alternateName Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    310 Environmental Engineering and Green Technology Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
    311 schema:name Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    312 Environmental Engineering and Green Technology Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
    313 Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran
    314 rdf:type schema:Organization
    315 grid-institutes:grid.411368.9 schema:alternateName Faculty of Mining and Metallurgy, Amirkabir University of Technology, 15914, Tehran, Iran
    316 schema:name Faculty of Mining and Metallurgy, Amirkabir University of Technology, 15914, Tehran, Iran
    317 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...