Evolutionary many-objective optimization based on linear assignment problem transformations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

Luis Miguel Antonio, José A. Molinet Berenguer, Carlos A. Coello Coello

ABSTRACT

The selection mechanisms that are most commonly adopted by multi-objective evolutionary algorithms (MOEAs) are based on Pareto optimality. However, recent studies have provided theoretical and experimental evidence regarding the unsuitability of Pareto-based selection mechanisms when dealing with problems having four or more objectives. In this paper, we propose a novel MOEA designed for solving many-objective optimization problems. The selection mechanism of our approach is based on the transformation of a multi-objective optimization problem into a linear assignment problem, which is solved by the Kuhn–Munkres’ (Hungarian) algorithm. Our proposed approach is compared with respect to three state-of-the-art MOEAs, designed for solving many-objective optimization problems (i.e., problems having four or more objectives), adopting standard test problems and performance indicators taken from the specialized literature. Since one of our main aims was to analyze the scalability of our proposed approach, its validation was performed adopting test problems having from two to nine objective functions. Our preliminary experimental results indicate that our proposal is very competitive with respect to all the other MOEAs compared, obtaining the best results in several of the test problems adopted, but at a significantly lower computational cost. More... »

PAGES

5491-5512

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-018-3164-3

DOI

http://dx.doi.org/10.1007/s00500-018-3164-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103157718


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN, Av. Instituto Polit\u00e9cnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, 07360, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antonio", 
        "givenName": "Luis Miguel", 
        "id": "sg:person.015676004474.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676004474.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN, Av. Instituto Polit\u00e9cnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, 07360, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berenguer", 
        "givenName": "Jos\u00e9 A. Molinet", 
        "id": "sg:person.07470126017.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470126017.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN, Av. Instituto Polit\u00e9cnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, 07360, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello", 
        "givenName": "Carlos A. Coello", 
        "id": "sg:person.012160505340.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2792984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007398119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco_a_00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007927159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10762-2_66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012771676", 
          "https://doi.org/10.1007/978-3-319-10762-2_66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2012.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012860579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014117674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70928-2_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014873269", 
          "https://doi.org/10.1007/978-3-540-70928-2_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-15892-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017176447", 
          "https://doi.org/10.1007/978-3-319-15892-1_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36970-8_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019183589", 
          "https://doi.org/10.1007/3-540-36970-8_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365600568167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022987704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/362919.362945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028235759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-84628-137-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028475054", 
          "https://doi.org/10.1007/1-84628-137-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2010.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031380549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15844-5_61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031486589", 
          "https://doi.org/10.1007/978-3-642-15844-5_61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15844-5_61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031486589", 
          "https://doi.org/10.1007/978-3-642-15844-5_61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.3800020109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032778056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87700-4_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037786163", 
          "https://doi.org/10.1007/978-3-540-87700-4_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87700-4_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037786163", 
          "https://doi.org/10.1007/978-3-540-87700-4_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-014-9644-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039194861", 
          "https://doi.org/10.1007/s10589-014-9644-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37140-0_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047497329", 
          "https://doi.org/10.1007/978-3-642-37140-0_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2330163.2330229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049875039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1960.tb42846.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051179376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2005.861417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2007.892759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2007.910138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.925798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2013.2281535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2015.2420112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0105003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623496307510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ica-160529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071127088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-017-2046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084763640", 
          "https://doi.org/10.1007/s11227-017-2046-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-017-2046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084763640", 
          "https://doi.org/10.1007/s11227-017-2046-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jocs.2017.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091492573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2013.6557783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093305795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2008.4631121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093335247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/gefs.2008.4484566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093434323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2001.934293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094699694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00029890.1962.11989827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101512498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "The selection mechanisms that are most commonly adopted by multi-objective evolutionary algorithms (MOEAs) are based on Pareto optimality. However, recent studies have provided theoretical and experimental evidence regarding the unsuitability of Pareto-based selection mechanisms when dealing with problems having four or more objectives. In this paper, we propose a novel MOEA designed for solving many-objective optimization problems. The selection mechanism of our approach is based on the transformation of a multi-objective optimization problem into a linear assignment problem, which is solved by the Kuhn\u2013Munkres\u2019 (Hungarian) algorithm. Our proposed approach is compared with respect to three state-of-the-art MOEAs, designed for solving many-objective optimization problems (i.e., problems having four or more objectives), adopting standard test problems and performance indicators taken from the specialized literature. Since one of our main aims was to analyze the scalability of our proposed approach, its validation was performed adopting test problems having from two to nine objective functions. Our preliminary experimental results indicate that our proposal is very competitive with respect to all the other MOEAs compared, obtaining the best results in several of the test problems adopted, but at a significantly lower computational cost.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-018-3164-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "16", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Evolutionary many-objective optimization based on linear assignment problem transformations", 
    "pagination": "5491-5512", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "af53441c854c3f90cdc1a8348069cd236cf151e0577742f8556b5ff4d61b5809"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-018-3164-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103157718"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-018-3164-3", 
      "https://app.dimensions.ai/details/publication/pub.1103157718"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-018-3164-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3164-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3164-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3164-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-3164-3'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-018-3164-3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N5c161d15da91436cb6b6fada1d0077af
4 schema:citation sg:pub.10.1007/1-84628-137-7_6
5 sg:pub.10.1007/3-540-36970-8_37
6 sg:pub.10.1007/978-3-319-10762-2_66
7 sg:pub.10.1007/978-3-319-15892-1_1
8 sg:pub.10.1007/978-3-540-70928-2_57
9 sg:pub.10.1007/978-3-540-87700-4_65
10 sg:pub.10.1007/978-3-642-15844-5_61
11 sg:pub.10.1007/978-3-642-37140-0_22
12 sg:pub.10.1007/s10589-014-9644-1
13 sg:pub.10.1007/s11227-017-2046-2
14 https://doi.org/10.1002/nav.3800020109
15 https://doi.org/10.1016/j.cor.2012.01.001
16 https://doi.org/10.1016/j.ejor.2006.08.008
17 https://doi.org/10.1016/j.jocs.2017.07.018
18 https://doi.org/10.1016/j.tcs.2010.09.026
19 https://doi.org/10.1080/00029890.1962.11989827
20 https://doi.org/10.1109/cec.2001.934293
21 https://doi.org/10.1109/cec.2008.4631121
22 https://doi.org/10.1109/cec.2013.6557783
23 https://doi.org/10.1109/gefs.2008.4484566
24 https://doi.org/10.1109/tevc.2005.861417
25 https://doi.org/10.1109/tevc.2007.892759
26 https://doi.org/10.1109/tevc.2007.910138
27 https://doi.org/10.1109/tevc.2008.925798
28 https://doi.org/10.1109/tevc.2013.2281535
29 https://doi.org/10.1109/tevc.2015.2420112
30 https://doi.org/10.1111/j.1749-6632.1960.tb42846.x
31 https://doi.org/10.1137/0105003
32 https://doi.org/10.1137/s1052623496307510
33 https://doi.org/10.1145/2330163.2330229
34 https://doi.org/10.1145/2792984
35 https://doi.org/10.1145/362919.362945
36 https://doi.org/10.1162/106365600568167
37 https://doi.org/10.1162/evco_a_00009
38 https://doi.org/10.3233/ica-160529
39 schema:datePublished 2018-08
40 schema:datePublishedReg 2018-08-01
41 schema:description The selection mechanisms that are most commonly adopted by multi-objective evolutionary algorithms (MOEAs) are based on Pareto optimality. However, recent studies have provided theoretical and experimental evidence regarding the unsuitability of Pareto-based selection mechanisms when dealing with problems having four or more objectives. In this paper, we propose a novel MOEA designed for solving many-objective optimization problems. The selection mechanism of our approach is based on the transformation of a multi-objective optimization problem into a linear assignment problem, which is solved by the Kuhn–Munkres’ (Hungarian) algorithm. Our proposed approach is compared with respect to three state-of-the-art MOEAs, designed for solving many-objective optimization problems (i.e., problems having four or more objectives), adopting standard test problems and performance indicators taken from the specialized literature. Since one of our main aims was to analyze the scalability of our proposed approach, its validation was performed adopting test problems having from two to nine objective functions. Our preliminary experimental results indicate that our proposal is very competitive with respect to all the other MOEAs compared, obtaining the best results in several of the test problems adopted, but at a significantly lower computational cost.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N7ff145e37abe49e19470e756d0dffde0
46 Nc718c82db65e402688a11dd558e4c1de
47 sg:journal.1050238
48 schema:name Evolutionary many-objective optimization based on linear assignment problem transformations
49 schema:pagination 5491-5512
50 schema:productId N281676ad637d4e0cb9fdf39b9c0a563b
51 N377db941d17944aa823c1ddfafffa0d0
52 Nb89590c7d29a4418915c8c76ae019c27
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103157718
54 https://doi.org/10.1007/s00500-018-3164-3
55 schema:sdDatePublished 2019-04-11T13:50
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nceac981fe144490485bdfcc2590f6f9d
58 schema:url https://link.springer.com/10.1007%2Fs00500-018-3164-3
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N281676ad637d4e0cb9fdf39b9c0a563b schema:name doi
63 schema:value 10.1007/s00500-018-3164-3
64 rdf:type schema:PropertyValue
65 N377db941d17944aa823c1ddfafffa0d0 schema:name dimensions_id
66 schema:value pub.1103157718
67 rdf:type schema:PropertyValue
68 N5c161d15da91436cb6b6fada1d0077af rdf:first sg:person.015676004474.68
69 rdf:rest N5c1f35a3df314176bd0a1d574134b48b
70 N5c1f35a3df314176bd0a1d574134b48b rdf:first sg:person.07470126017.20
71 rdf:rest N9168c292c55141efbcb2dfe6704d5c26
72 N7ff145e37abe49e19470e756d0dffde0 schema:issueNumber 16
73 rdf:type schema:PublicationIssue
74 N9168c292c55141efbcb2dfe6704d5c26 rdf:first sg:person.012160505340.13
75 rdf:rest rdf:nil
76 Nb89590c7d29a4418915c8c76ae019c27 schema:name readcube_id
77 schema:value af53441c854c3f90cdc1a8348069cd236cf151e0577742f8556b5ff4d61b5809
78 rdf:type schema:PropertyValue
79 Nc718c82db65e402688a11dd558e4c1de schema:volumeNumber 22
80 rdf:type schema:PublicationVolume
81 Nceac981fe144490485bdfcc2590f6f9d schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
87 schema:name Numerical and Computational Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1050238 schema:issn 1432-7643
90 1433-7479
91 schema:name Soft Computing
92 rdf:type schema:Periodical
93 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
94 schema:familyName Coello
95 schema:givenName Carlos A. Coello
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
97 rdf:type schema:Person
98 sg:person.015676004474.68 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
99 schema:familyName Antonio
100 schema:givenName Luis Miguel
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676004474.68
102 rdf:type schema:Person
103 sg:person.07470126017.20 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
104 schema:familyName Berenguer
105 schema:givenName José A. Molinet
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470126017.20
107 rdf:type schema:Person
108 sg:pub.10.1007/1-84628-137-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028475054
109 https://doi.org/10.1007/1-84628-137-7_6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/3-540-36970-8_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183589
112 https://doi.org/10.1007/3-540-36970-8_37
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-319-10762-2_66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012771676
115 https://doi.org/10.1007/978-3-319-10762-2_66
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-319-15892-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017176447
118 https://doi.org/10.1007/978-3-319-15892-1_1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-540-70928-2_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014873269
121 https://doi.org/10.1007/978-3-540-70928-2_57
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-540-87700-4_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037786163
124 https://doi.org/10.1007/978-3-540-87700-4_65
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-642-15844-5_61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031486589
127 https://doi.org/10.1007/978-3-642-15844-5_61
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-642-37140-0_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047497329
130 https://doi.org/10.1007/978-3-642-37140-0_22
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10589-014-9644-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039194861
133 https://doi.org/10.1007/s10589-014-9644-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11227-017-2046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084763640
136 https://doi.org/10.1007/s11227-017-2046-2
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/nav.3800020109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032778056
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.cor.2012.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012860579
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ejor.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117674
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jocs.2017.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091492573
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.tcs.2010.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031380549
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/00029890.1962.11989827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101512498
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/cec.2001.934293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094699694
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/cec.2008.4631121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093335247
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/cec.2013.6557783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093305795
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/gefs.2008.4484566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093434323
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tevc.2005.861417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604731
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tevc.2007.892759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604790
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tevc.2007.910138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604829
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tevc.2008.925798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604890
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tevc.2013.2281535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605171
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tevc.2015.2420112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605249
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.1749-6632.1960.tb42846.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051179376
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/0105003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837605
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/s1052623496307510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883567
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/2330163.2330229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049875039
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1145/2792984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007398119
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/362919.362945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028235759
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1162/106365600568167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022987704
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1162/evco_a_00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007927159
185 rdf:type schema:CreativeWork
186 https://doi.org/10.3233/ica-160529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071127088
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
189 schema:name Computer Science Department, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, 07360, Mexico City, Mexico
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...