Protein docking using constrained self-adaptive differential evolution algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-02

AUTHORS

S. Sudha, S. Baskar, S. Krishnaswamy

ABSTRACT

The objective of protein docking is to achieve a relative orientation and an optimized conformation between two proteins that results in a stable structure with the minimized potential energy. Constrained self-adaptive differential evolution (Cons_SaDE) algorithm is used to find the minimum energy conformation using proposed constraints such as boundary surface complementary interactions, non-bonded inter-atomic allowed distances and finding of interaction and non-interaction sites. With these constraints, Cons_SaDE is efficient enough to explore the promising solutions by gradually self-adapting the strategies and parameters learned from their previous experiences. Modified sampling scheme called rotate only representation is used to represent a docking conformation. GROMOS53A6 force field is used to find the potential energy. To test the performance of this algorithm, few bound and unbound complexes from Protein Data Bank (PDB) and few easy, medium and difficult complexes from Zlab Benchmark 4.0 are used. Buried surface area, root-mean-square deviation (RMSD) and correlation coefficient are some of the metrics applied to evaluate the best docked conformations. RMSD values of the best docked conformations obtained from five popular docking Web servers are compared with Cons_SaDE results, and nonparametric statistical tests for multiple comparisons with control method are implemented to show the performance of this algorithm. Cons_SaDE has produced good-quality solutions for the most of the data sets considered. More... »

PAGES

1-19

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2

DOI

http://dx.doi.org/10.1007/s00500-018-03717-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111057474


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Thiagarajar College of Engineering, 625015, Madurai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sudha", 
        "givenName": "S.", 
        "id": "sg:person.014065700463.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065700463.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Thiagarajar College of Engineering, 625015, Madurai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baskar", 
        "givenName": "S.", 
        "id": "sg:person.010063143555.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063143555.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, 600113, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnaswamy", 
        "givenName": "S.", 
        "id": "sg:person.0717446544.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717446544.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/prot.10389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000099680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11839088_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000565374", 
          "https://doi.org/10.1007/11839088_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11839088_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000565374", 
          "https://doi.org/10.1007/11839088_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001648617", 
          "https://doi.org/10.1186/1471-2105-12-36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001825595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005477378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005477378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00670-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005972622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00670-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005972622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006388252", 
          "https://doi.org/10.1038/nprot.2010.32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006388252", 
          "https://doi.org/10.1038/nprot.2010.32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-013-1090-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006460191", 
          "https://doi.org/10.1007/s00500-013-1090-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006770624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-5956-11-s1-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007376027", 
          "https://doi.org/10.1186/1477-5956-11-s1-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008850190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009042559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011052808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012898032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012898032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013001654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014181366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014181366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2007.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015170157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1996.4.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015780777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90153-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018405207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2005.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022636819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2005.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022636819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024954447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024954447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-014-1353-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029778708", 
          "https://doi.org/10.1007/s00500-014-1353-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030316873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031514441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032488285", 
          "https://doi.org/10.1186/1471-2105-13-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032488285", 
          "https://doi.org/10.1186/1471-2105-13-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-0346(02)00011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033022041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-0346(02)00011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033022041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033707055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms11103623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037053301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540161004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037139624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-00619-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038616299", 
          "https://doi.org/10.1007/978-3-642-00619-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-00619-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038616299", 
          "https://doi.org/10.1007/978-3-642-00619-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(19981115)33:3<367::aid-prot6>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038835618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039861817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039861817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-7177(96)00014-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039986467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040055049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2008.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040378941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1753-6561-6-s7-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042883456", 
          "https://doi.org/10.1186/1753-6561-6-s7-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.23304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044498806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048663110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049808030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0042846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050355180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-013-1028-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051330063", 
          "https://doi.org/10.1007/s00500-013-1028-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051500176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-011-0744-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052354024", 
          "https://doi.org/10.1007/s00500-011-0744-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053517382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci800166p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci800166p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm051197e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055950020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm051197e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055950020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2009.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.927706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/9781849733403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108319418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/9781849733403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108319418"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-02", 
    "datePublishedReg": "2019-01-02", 
    "description": "The objective of protein docking is to achieve a relative orientation and an optimized conformation between two proteins that results in a stable structure with the minimized potential energy. Constrained self-adaptive differential evolution (Cons_SaDE) algorithm is used to find the minimum energy conformation using proposed constraints such as boundary surface complementary interactions, non-bonded inter-atomic allowed distances and finding of interaction and non-interaction sites. With these constraints, Cons_SaDE is efficient enough to explore the promising solutions by gradually self-adapting the strategies and parameters learned from their previous experiences. Modified sampling scheme called rotate only representation is used to represent a docking conformation. GROMOS53A6 force field is used to find the potential energy. To test the performance of this algorithm, few bound and unbound complexes from Protein Data Bank (PDB) and few easy, medium and difficult complexes from Zlab Benchmark 4.0 are used. Buried surface area, root-mean-square deviation (RMSD) and correlation coefficient are some of the metrics applied to evaluate the best docked conformations. RMSD values of the best docked conformations obtained from five popular docking Web servers are compared with Cons_SaDE results, and nonparametric statistical tests for multiple comparisons with control method are implemented to show the performance of this algorithm. Cons_SaDE has produced good-quality solutions for the most of the data sets considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-018-03717-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Protein docking using constrained self-adaptive differential evolution algorithm", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d068cdd89cb1ae4ef059eb71f0fd6b8d7230123108e2dbdc1864d9e9b2f757aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-018-03717-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111057474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-018-03717-2", 
      "https://app.dimensions.ai/details/publication/pub.1111057474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90718_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-018-03717-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      75 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-018-03717-2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N8ed0946cec1f46d698aa3ebfd1fe10d9
4 schema:citation sg:pub.10.1007/11839088_22
5 sg:pub.10.1007/978-3-642-00619-7_3
6 sg:pub.10.1007/s00500-011-0744-x
7 sg:pub.10.1007/s00500-013-1028-4
8 sg:pub.10.1007/s00500-013-1090-y
9 sg:pub.10.1007/s00500-014-1353-2
10 sg:pub.10.1023/a:1008202821328
11 sg:pub.10.1038/nprot.2010.32
12 sg:pub.10.1186/1471-2105-12-36
13 sg:pub.10.1186/1471-2105-13-7
14 sg:pub.10.1186/1477-5956-11-s1-s6
15 sg:pub.10.1186/1753-6561-6-s7-s4
16 https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b
17 https://doi.org/10.1002/(sici)1097-0134(19981115)33:3<367::aid-prot6>3.0.co;2-w
18 https://doi.org/10.1002/jcc.20090
19 https://doi.org/10.1002/jcc.20252
20 https://doi.org/10.1002/jcc.23304
21 https://doi.org/10.1002/jcc.540161004
22 https://doi.org/10.1002/prot.10383
23 https://doi.org/10.1002/prot.10389
24 https://doi.org/10.1002/prot.20573
25 https://doi.org/10.1002/prot.20790
26 https://doi.org/10.1002/prot.21117
27 https://doi.org/10.1002/prot.22668
28 https://doi.org/10.1002/prot.24079
29 https://doi.org/10.1002/prot.24400
30 https://doi.org/10.1002/prot.24403
31 https://doi.org/10.1006/jmbi.1996.0897
32 https://doi.org/10.1006/jmbi.1997.1203
33 https://doi.org/10.1016/0022-2836(82)90153-x
34 https://doi.org/10.1016/0895-7177(96)00014-3
35 https://doi.org/10.1016/j.chemolab.2005.06.017
36 https://doi.org/10.1016/j.jmb.2007.07.050
37 https://doi.org/10.1016/j.jmb.2008.05.042
38 https://doi.org/10.1016/j.swevo.2011.02.002
39 https://doi.org/10.1016/s0022-2836(03)00670-3
40 https://doi.org/10.1016/s1474-0346(02)00011-3
41 https://doi.org/10.1021/ci800166p
42 https://doi.org/10.1021/jm051197e
43 https://doi.org/10.1039/9781849733403
44 https://doi.org/10.1093/bioinformatics/btn334
45 https://doi.org/10.1093/bioinformatics/btp447
46 https://doi.org/10.1093/bioinformatics/btu097
47 https://doi.org/10.1093/nar/gki481
48 https://doi.org/10.1093/nar/gkl206
49 https://doi.org/10.1093/nar/gkq311
50 https://doi.org/10.1109/tcbb.2009.57
51 https://doi.org/10.1109/tevc.2008.927706
52 https://doi.org/10.1162/evco.1996.4.1.1
53 https://doi.org/10.1371/journal.pone.0042846
54 https://doi.org/10.3390/ijms11103623
55 schema:datePublished 2019-01-02
56 schema:datePublishedReg 2019-01-02
57 schema:description The objective of protein docking is to achieve a relative orientation and an optimized conformation between two proteins that results in a stable structure with the minimized potential energy. Constrained self-adaptive differential evolution (Cons_SaDE) algorithm is used to find the minimum energy conformation using proposed constraints such as boundary surface complementary interactions, non-bonded inter-atomic allowed distances and finding of interaction and non-interaction sites. With these constraints, Cons_SaDE is efficient enough to explore the promising solutions by gradually self-adapting the strategies and parameters learned from their previous experiences. Modified sampling scheme called rotate only representation is used to represent a docking conformation. GROMOS53A6 force field is used to find the potential energy. To test the performance of this algorithm, few bound and unbound complexes from Protein Data Bank (PDB) and few easy, medium and difficult complexes from Zlab Benchmark 4.0 are used. Buried surface area, root-mean-square deviation (RMSD) and correlation coefficient are some of the metrics applied to evaluate the best docked conformations. RMSD values of the best docked conformations obtained from five popular docking Web servers are compared with Cons_SaDE results, and nonparametric statistical tests for multiple comparisons with control method are implemented to show the performance of this algorithm. Cons_SaDE has produced good-quality solutions for the most of the data sets considered.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf sg:journal.1050238
62 schema:name Protein docking using constrained self-adaptive differential evolution algorithm
63 schema:pagination 1-19
64 schema:productId N06bb02613cc94b389fab27dbdf9d4b93
65 N3e09bf4246da431ba19c6bb1393bdd5a
66 Nfc9ba3a1fb8049108252ed202d5494a8
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057474
68 https://doi.org/10.1007/s00500-018-03717-2
69 schema:sdDatePublished 2019-04-11T08:33
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nf7ee0f5a5b414df6bb365dfb6c3c91c2
72 schema:url https://link.springer.com/10.1007%2Fs00500-018-03717-2
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N06bb02613cc94b389fab27dbdf9d4b93 schema:name dimensions_id
77 schema:value pub.1111057474
78 rdf:type schema:PropertyValue
79 N3e09bf4246da431ba19c6bb1393bdd5a schema:name readcube_id
80 schema:value d068cdd89cb1ae4ef059eb71f0fd6b8d7230123108e2dbdc1864d9e9b2f757aa
81 rdf:type schema:PropertyValue
82 N8ed0946cec1f46d698aa3ebfd1fe10d9 rdf:first sg:person.014065700463.65
83 rdf:rest Ncbe4d72fc7db4cb39ac181d78f4a8b62
84 Ncbe4d72fc7db4cb39ac181d78f4a8b62 rdf:first sg:person.010063143555.10
85 rdf:rest Nf83140dffc9648489e63a5d1cb2dffda
86 Nf7ee0f5a5b414df6bb365dfb6c3c91c2 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nf83140dffc9648489e63a5d1cb2dffda rdf:first sg:person.0717446544.40
89 rdf:rest rdf:nil
90 Nfc9ba3a1fb8049108252ed202d5494a8 schema:name doi
91 schema:value 10.1007/s00500-018-03717-2
92 rdf:type schema:PropertyValue
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
97 schema:name Other Physical Sciences
98 rdf:type schema:DefinedTerm
99 sg:journal.1050238 schema:issn 1432-7643
100 1433-7479
101 schema:name Soft Computing
102 rdf:type schema:Periodical
103 sg:person.010063143555.10 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
104 schema:familyName Baskar
105 schema:givenName S.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063143555.10
107 rdf:type schema:Person
108 sg:person.014065700463.65 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
109 schema:familyName Sudha
110 schema:givenName S.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065700463.65
112 rdf:type schema:Person
113 sg:person.0717446544.40 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
114 schema:familyName Krishnaswamy
115 schema:givenName S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717446544.40
117 rdf:type schema:Person
118 sg:pub.10.1007/11839088_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000565374
119 https://doi.org/10.1007/11839088_22
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-642-00619-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038616299
122 https://doi.org/10.1007/978-3-642-00619-7_3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00500-011-0744-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052354024
125 https://doi.org/10.1007/s00500-011-0744-x
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00500-013-1028-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051330063
128 https://doi.org/10.1007/s00500-013-1028-4
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00500-013-1090-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006460191
131 https://doi.org/10.1007/s00500-013-1090-y
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00500-014-1353-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029778708
134 https://doi.org/10.1007/s00500-014-1353-2
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
137 https://doi.org/10.1023/a:1008202821328
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nprot.2010.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006388252
140 https://doi.org/10.1038/nprot.2010.32
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1471-2105-12-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001648617
143 https://doi.org/10.1186/1471-2105-12-36
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1471-2105-13-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032488285
146 https://doi.org/10.1186/1471-2105-13-7
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/1477-5956-11-s1-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007376027
149 https://doi.org/10.1186/1477-5956-11-s1-s6
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/1753-6561-6-s7-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042883456
152 https://doi.org/10.1186/1753-6561-6-s7-s4
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1051500176
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/(sici)1097-0134(19981115)33:3<367::aid-prot6>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1038835618
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/jcc.20090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055049
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/jcc.20252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012898032
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/jcc.23304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044498806
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/jcc.540161004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037139624
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/prot.10383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033707055
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/prot.10389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099680
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/prot.20573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005477378
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/prot.20790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039861817
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/prot.21117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013001654
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/prot.22668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024954447
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/prot.24079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001825595
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/prot.24400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008850190
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/prot.24403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006770624
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1006/jmbi.1996.0897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031514441
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1006/jmbi.1997.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049808030
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0022-2836(82)90153-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018405207
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/0895-7177(96)00014-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039986467
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.chemolab.2005.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022636819
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jmb.2007.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015170157
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jmb.2008.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040378941
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.swevo.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011052808
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0022-2836(03)00670-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005972622
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s1474-0346(02)00011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033022041
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/ci800166p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404523
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/jm051197e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055950020
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1039/9781849733403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108319418
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bioinformatics/btn334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159641
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/btp447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009042559
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/btu097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053517382
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/nar/gki481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048663110
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/nar/gkl206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030316873
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/gkq311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014181366
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/tcbb.2009.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540733
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/tevc.2008.927706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604895
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1162/evco.1996.4.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015780777
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pone.0042846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050355180
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3390/ijms11103623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037053301
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.252262.3 schema:alternateName Anna University, Chennai
233 schema:name Thiagarajar College of Engineering, 625015, Madurai, India
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.462414.1 schema:alternateName Institute of Mathematical Sciences
236 schema:name The Institute of Mathematical Sciences, 600113, Chennai, India
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...