Protein docking using constrained self-adaptive differential evolution algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-02

AUTHORS

S. Sudha, S. Baskar, S. Krishnaswamy

ABSTRACT

The objective of protein docking is to achieve a relative orientation and an optimized conformation between two proteins that results in a stable structure with the minimized potential energy. Constrained self-adaptive differential evolution (Cons_SaDE) algorithm is used to find the minimum energy conformation using proposed constraints such as boundary surface complementary interactions, non-bonded inter-atomic allowed distances and finding of interaction and non-interaction sites. With these constraints, Cons_SaDE is efficient enough to explore the promising solutions by gradually self-adapting the strategies and parameters learned from their previous experiences. Modified sampling scheme called rotate only representation is used to represent a docking conformation. GROMOS53A6 force field is used to find the potential energy. To test the performance of this algorithm, few bound and unbound complexes from Protein Data Bank (PDB) and few easy, medium and difficult complexes from Zlab Benchmark 4.0 are used. Buried surface area, root-mean-square deviation (RMSD) and correlation coefficient are some of the metrics applied to evaluate the best docked conformations. RMSD values of the best docked conformations obtained from five popular docking Web servers are compared with Cons_SaDE results, and nonparametric statistical tests for multiple comparisons with control method are implemented to show the performance of this algorithm. Cons_SaDE has produced good-quality solutions for the most of the data sets considered. More... »

PAGES

1-19

References to SciGraph publications

  • 2013-10. A novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimization in SOFT COMPUTING
  • 2012-11. Effect of conformation sampling strategies in genetic algorithm for multiple protein docking in BMC PROCEEDINGS
  • 2013-12. A prediction-based adaptive grouping differential evolution algorithm for constrained numerical optimization in SOFT COMPUTING
  • 2015-06. Protein structure prediction using diversity controlled self-adaptive differential evolution with local search in SOFT COMPUTING
  • 2011-12. ASPDock: protein-protein docking algorithm using atomic solvation parameters model in BMC BIOINFORMATICS
  • 2012-02. Learning-enhanced differential evolution for numerical optimization in SOFT COMPUTING
  • 2006. PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design in ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE
  • 2009. Solving Difficult Constrained Optimization Problems by the ε Constrained Differential Evolution with Gradient-Based Mutation in CONSTRAINT-HANDLING IN EVOLUTIONARY OPTIMIZATION
  • 2010-05. The HADDOCK web server for data-driven biomolecular docking in NATURE PROTOCOLS
  • 1997-12. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces in JOURNAL OF GLOBAL OPTIMIZATION
  • 2012-12. Protein docking prediction using predicted protein-protein interface in BMC BIOINFORMATICS
  • 2013-12. HopDock: a probabilistic search algorithm for decoy sampling in protein-protein docking in PROTEOME SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2

    DOI

    http://dx.doi.org/10.1007/s00500-018-03717-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111057474


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Anna University, Chennai", 
              "id": "https://www.grid.ac/institutes/grid.252262.3", 
              "name": [
                "Thiagarajar College of Engineering, 625015, Madurai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sudha", 
            "givenName": "S.", 
            "id": "sg:person.014065700463.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065700463.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Anna University, Chennai", 
              "id": "https://www.grid.ac/institutes/grid.252262.3", 
              "name": [
                "Thiagarajar College of Engineering, 625015, Madurai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baskar", 
            "givenName": "S.", 
            "id": "sg:person.010063143555.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063143555.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.462414.1", 
              "name": [
                "The Institute of Mathematical Sciences, 600113, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krishnaswamy", 
            "givenName": "S.", 
            "id": "sg:person.0717446544.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717446544.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/prot.10389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000099680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11839088_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000565374", 
              "https://doi.org/10.1007/11839088_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11839088_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000565374", 
              "https://doi.org/10.1007/11839088_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001648617", 
              "https://doi.org/10.1186/1471-2105-12-36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001825595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002159641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005477378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005477378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(03)00670-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005972622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(03)00670-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005972622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006388252", 
              "https://doi.org/10.1038/nprot.2010.32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006388252", 
              "https://doi.org/10.1038/nprot.2010.32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-013-1090-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006460191", 
              "https://doi.org/10.1007/s00500-013-1090-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006770624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1477-5956-11-s1-s6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007376027", 
              "https://doi.org/10.1186/1477-5956-11-s1-s6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008850190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009042559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.swevo.2011.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011052808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012898032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012898032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008202821328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012950914", 
              "https://doi.org/10.1023/a:1008202821328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.21117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013001654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014181366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014181366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2007.07.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015170157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/evco.1996.4.1.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015780777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(82)90153-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018405207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemolab.2005.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022636819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemolab.2005.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022636819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.22668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024954447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.22668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024954447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-014-1353-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029778708", 
              "https://doi.org/10.1007/s00500-014-1353-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030316873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1996.0897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031514441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032488285", 
              "https://doi.org/10.1186/1471-2105-13-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032488285", 
              "https://doi.org/10.1186/1471-2105-13-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1474-0346(02)00011-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033022041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1474-0346(02)00011-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033022041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.10383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033707055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijms11103623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037053301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.540161004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037139624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00619-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038616299", 
              "https://doi.org/10.1007/978-3-642-00619-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00619-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038616299", 
              "https://doi.org/10.1007/978-3-642-00619-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0134(19981115)33:3<367::aid-prot6>3.0.co;2-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038835618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039861817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039861817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0895-7177(96)00014-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039986467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040055049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2008.05.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040378941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1753-6561-6-s7-s4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042883456", 
              "https://doi.org/10.1186/1753-6561-6-s7-s4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.23304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044498806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048663110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1997.1203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049808030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0042846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050355180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-013-1028-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051330063", 
              "https://doi.org/10.1007/s00500-013-1028-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051500176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-011-0744-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052354024", 
              "https://doi.org/10.1007/s00500-011-0744-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053517382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci800166p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055404523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci800166p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055404523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jm051197e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055950020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jm051197e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055950020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2009.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061540733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2008.927706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/9781849733403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108319418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/9781849733403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108319418"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-02", 
        "datePublishedReg": "2019-01-02", 
        "description": "The objective of protein docking is to achieve a relative orientation and an optimized conformation between two proteins that results in a stable structure with the minimized potential energy. Constrained self-adaptive differential evolution (Cons_SaDE) algorithm is used to find the minimum energy conformation using proposed constraints such as boundary surface complementary interactions, non-bonded inter-atomic allowed distances and finding of interaction and non-interaction sites. With these constraints, Cons_SaDE is efficient enough to explore the promising solutions by gradually self-adapting the strategies and parameters learned from their previous experiences. Modified sampling scheme called rotate only representation is used to represent a docking conformation. GROMOS53A6 force field is used to find the potential energy. To test the performance of this algorithm, few bound and unbound complexes from Protein Data Bank (PDB) and few easy, medium and difficult complexes from Zlab Benchmark 4.0 are used. Buried surface area, root-mean-square deviation (RMSD) and correlation coefficient are some of the metrics applied to evaluate the best docked conformations. RMSD values of the best docked conformations obtained from five popular docking Web servers are compared with Cons_SaDE results, and nonparametric statistical tests for multiple comparisons with control method are implemented to show the performance of this algorithm. Cons_SaDE has produced good-quality solutions for the most of the data sets considered.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00500-018-03717-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050238", 
            "issn": [
              "1432-7643", 
              "1433-7479"
            ], 
            "name": "Soft Computing", 
            "type": "Periodical"
          }
        ], 
        "name": "Protein docking using constrained self-adaptive differential evolution algorithm", 
        "pagination": "1-19", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d068cdd89cb1ae4ef059eb71f0fd6b8d7230123108e2dbdc1864d9e9b2f757aa"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00500-018-03717-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111057474"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00500-018-03717-2", 
          "https://app.dimensions.ai/details/publication/pub.1111057474"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90718_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00500-018-03717-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-018-03717-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    237 TRIPLES      21 PREDICATES      75 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00500-018-03717-2 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N1837410a5ea649dab1368d463cfd3261
    4 schema:citation sg:pub.10.1007/11839088_22
    5 sg:pub.10.1007/978-3-642-00619-7_3
    6 sg:pub.10.1007/s00500-011-0744-x
    7 sg:pub.10.1007/s00500-013-1028-4
    8 sg:pub.10.1007/s00500-013-1090-y
    9 sg:pub.10.1007/s00500-014-1353-2
    10 sg:pub.10.1023/a:1008202821328
    11 sg:pub.10.1038/nprot.2010.32
    12 sg:pub.10.1186/1471-2105-12-36
    13 sg:pub.10.1186/1471-2105-13-7
    14 sg:pub.10.1186/1477-5956-11-s1-s6
    15 sg:pub.10.1186/1753-6561-6-s7-s4
    16 https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b
    17 https://doi.org/10.1002/(sici)1097-0134(19981115)33:3<367::aid-prot6>3.0.co;2-w
    18 https://doi.org/10.1002/jcc.20090
    19 https://doi.org/10.1002/jcc.20252
    20 https://doi.org/10.1002/jcc.23304
    21 https://doi.org/10.1002/jcc.540161004
    22 https://doi.org/10.1002/prot.10383
    23 https://doi.org/10.1002/prot.10389
    24 https://doi.org/10.1002/prot.20573
    25 https://doi.org/10.1002/prot.20790
    26 https://doi.org/10.1002/prot.21117
    27 https://doi.org/10.1002/prot.22668
    28 https://doi.org/10.1002/prot.24079
    29 https://doi.org/10.1002/prot.24400
    30 https://doi.org/10.1002/prot.24403
    31 https://doi.org/10.1006/jmbi.1996.0897
    32 https://doi.org/10.1006/jmbi.1997.1203
    33 https://doi.org/10.1016/0022-2836(82)90153-x
    34 https://doi.org/10.1016/0895-7177(96)00014-3
    35 https://doi.org/10.1016/j.chemolab.2005.06.017
    36 https://doi.org/10.1016/j.jmb.2007.07.050
    37 https://doi.org/10.1016/j.jmb.2008.05.042
    38 https://doi.org/10.1016/j.swevo.2011.02.002
    39 https://doi.org/10.1016/s0022-2836(03)00670-3
    40 https://doi.org/10.1016/s1474-0346(02)00011-3
    41 https://doi.org/10.1021/ci800166p
    42 https://doi.org/10.1021/jm051197e
    43 https://doi.org/10.1039/9781849733403
    44 https://doi.org/10.1093/bioinformatics/btn334
    45 https://doi.org/10.1093/bioinformatics/btp447
    46 https://doi.org/10.1093/bioinformatics/btu097
    47 https://doi.org/10.1093/nar/gki481
    48 https://doi.org/10.1093/nar/gkl206
    49 https://doi.org/10.1093/nar/gkq311
    50 https://doi.org/10.1109/tcbb.2009.57
    51 https://doi.org/10.1109/tevc.2008.927706
    52 https://doi.org/10.1162/evco.1996.4.1.1
    53 https://doi.org/10.1371/journal.pone.0042846
    54 https://doi.org/10.3390/ijms11103623
    55 schema:datePublished 2019-01-02
    56 schema:datePublishedReg 2019-01-02
    57 schema:description The objective of protein docking is to achieve a relative orientation and an optimized conformation between two proteins that results in a stable structure with the minimized potential energy. Constrained self-adaptive differential evolution (Cons_SaDE) algorithm is used to find the minimum energy conformation using proposed constraints such as boundary surface complementary interactions, non-bonded inter-atomic allowed distances and finding of interaction and non-interaction sites. With these constraints, Cons_SaDE is efficient enough to explore the promising solutions by gradually self-adapting the strategies and parameters learned from their previous experiences. Modified sampling scheme called rotate only representation is used to represent a docking conformation. GROMOS53A6 force field is used to find the potential energy. To test the performance of this algorithm, few bound and unbound complexes from Protein Data Bank (PDB) and few easy, medium and difficult complexes from Zlab Benchmark 4.0 are used. Buried surface area, root-mean-square deviation (RMSD) and correlation coefficient are some of the metrics applied to evaluate the best docked conformations. RMSD values of the best docked conformations obtained from five popular docking Web servers are compared with Cons_SaDE results, and nonparametric statistical tests for multiple comparisons with control method are implemented to show the performance of this algorithm. Cons_SaDE has produced good-quality solutions for the most of the data sets considered.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf sg:journal.1050238
    62 schema:name Protein docking using constrained self-adaptive differential evolution algorithm
    63 schema:pagination 1-19
    64 schema:productId N22a784e495704512a97abbdca453f719
    65 N84ab54dc7c954849828d87cbf57a0151
    66 Nd4bc921f71ff489da26ef1da8378543a
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057474
    68 https://doi.org/10.1007/s00500-018-03717-2
    69 schema:sdDatePublished 2019-04-11T08:33
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Ndad68bd41bf14d8a9a6828c1bd047b61
    72 schema:url https://link.springer.com/10.1007%2Fs00500-018-03717-2
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N1837410a5ea649dab1368d463cfd3261 rdf:first sg:person.014065700463.65
    77 rdf:rest N8f22327fd53441c4bdfaf6814863503a
    78 N1dcdb3cd1130465e8565015aa253fcce rdf:first sg:person.0717446544.40
    79 rdf:rest rdf:nil
    80 N22a784e495704512a97abbdca453f719 schema:name readcube_id
    81 schema:value d068cdd89cb1ae4ef059eb71f0fd6b8d7230123108e2dbdc1864d9e9b2f757aa
    82 rdf:type schema:PropertyValue
    83 N84ab54dc7c954849828d87cbf57a0151 schema:name doi
    84 schema:value 10.1007/s00500-018-03717-2
    85 rdf:type schema:PropertyValue
    86 N8f22327fd53441c4bdfaf6814863503a rdf:first sg:person.010063143555.10
    87 rdf:rest N1dcdb3cd1130465e8565015aa253fcce
    88 Nd4bc921f71ff489da26ef1da8378543a schema:name dimensions_id
    89 schema:value pub.1111057474
    90 rdf:type schema:PropertyValue
    91 Ndad68bd41bf14d8a9a6828c1bd047b61 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Physical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Other Physical Sciences
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1050238 schema:issn 1432-7643
    100 1433-7479
    101 schema:name Soft Computing
    102 rdf:type schema:Periodical
    103 sg:person.010063143555.10 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
    104 schema:familyName Baskar
    105 schema:givenName S.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063143555.10
    107 rdf:type schema:Person
    108 sg:person.014065700463.65 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
    109 schema:familyName Sudha
    110 schema:givenName S.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065700463.65
    112 rdf:type schema:Person
    113 sg:person.0717446544.40 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
    114 schema:familyName Krishnaswamy
    115 schema:givenName S.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717446544.40
    117 rdf:type schema:Person
    118 sg:pub.10.1007/11839088_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000565374
    119 https://doi.org/10.1007/11839088_22
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-00619-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038616299
    122 https://doi.org/10.1007/978-3-642-00619-7_3
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s00500-011-0744-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052354024
    125 https://doi.org/10.1007/s00500-011-0744-x
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s00500-013-1028-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051330063
    128 https://doi.org/10.1007/s00500-013-1028-4
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00500-013-1090-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006460191
    131 https://doi.org/10.1007/s00500-013-1090-y
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00500-014-1353-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029778708
    134 https://doi.org/10.1007/s00500-014-1353-2
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
    137 https://doi.org/10.1023/a:1008202821328
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nprot.2010.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006388252
    140 https://doi.org/10.1038/nprot.2010.32
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1186/1471-2105-12-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001648617
    143 https://doi.org/10.1186/1471-2105-12-36
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1186/1471-2105-13-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032488285
    146 https://doi.org/10.1186/1471-2105-13-7
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1186/1477-5956-11-s1-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007376027
    149 https://doi.org/10.1186/1477-5956-11-s1-s6
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1186/1753-6561-6-s7-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042883456
    152 https://doi.org/10.1186/1753-6561-6-s7-s4
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1051500176
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1002/(sici)1097-0134(19981115)33:3<367::aid-prot6>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1038835618
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1002/jcc.20090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055049
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1002/jcc.20252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012898032
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1002/jcc.23304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044498806
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1002/jcc.540161004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037139624
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1002/prot.10383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033707055
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1002/prot.10389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099680
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1002/prot.20573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005477378
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1002/prot.20790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039861817
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1002/prot.21117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013001654
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1002/prot.22668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024954447
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1002/prot.24079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001825595
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/prot.24400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008850190
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/prot.24403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006770624
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1006/jmbi.1996.0897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031514441
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1006/jmbi.1997.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049808030
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/0022-2836(82)90153-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018405207
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/0895-7177(96)00014-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039986467
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.chemolab.2005.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022636819
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.jmb.2007.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015170157
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.jmb.2008.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040378941
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.swevo.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011052808
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/s0022-2836(03)00670-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005972622
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/s1474-0346(02)00011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033022041
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1021/ci800166p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404523
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/jm051197e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055950020
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1039/9781849733403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108319418
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1093/bioinformatics/btn334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159641
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1093/bioinformatics/btp447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009042559
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1093/bioinformatics/btu097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053517382
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1093/nar/gki481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048663110
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1093/nar/gkl206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030316873
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/nar/gkq311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014181366
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/tcbb.2009.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540733
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/tevc.2008.927706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604895
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1162/evco.1996.4.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015780777
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1371/journal.pone.0042846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050355180
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.3390/ijms11103623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037053301
    231 rdf:type schema:CreativeWork
    232 https://www.grid.ac/institutes/grid.252262.3 schema:alternateName Anna University, Chennai
    233 schema:name Thiagarajar College of Engineering, 625015, Madurai, India
    234 rdf:type schema:Organization
    235 https://www.grid.ac/institutes/grid.462414.1 schema:alternateName Institute of Mathematical Sciences
    236 schema:name The Institute of Mathematical Sciences, 600113, Chennai, India
    237 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...