Self-adaptive type-1/type-2 hybrid fuzzy reasoning techniques for two-factored stock index time-series prediction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Diptendu Bhattacharya, Amit Konar

ABSTRACT

Considerable research outcomes on stock index time-series prediction using classical (type-1) fuzzy sets are available in the literature. However, type-1 fuzzy sets cannot fully capture the uncertainty involved in prediction because of its limited representation capability. This paper fills the void. Here, we propose four chronologically improved methods of time-series prediction using interval type-2 fuzzy sets. The first method is concerned with prediction of the (main factor) variation time-series using interval type-2 fuzzy reasoning. The second method considers secondary factor variation as an additional condition in the antecedent of the rules used for prediction. Another important aspect of the first and the second methods is non-uniform partitioning of the dynamic range of the time-series using evolutionary algorithm, so as to ensure that each partition includes at least one data point. The third method considers uniform partitioning without imposing any restriction on the number of data points in a partition. The partitions are here modeled by type-1 fuzzy sets, if there exists a single block of contiguous data, and by interval type-2 fuzzy sets, if there exists two or more blocks of contiguous data in a partition. The fourth method keeps provision for tuning of membership functions using recent data from the given time-series to influence the prediction results with the current trends. Experiments undertaken confirm that the fourth technique outperforms the first three techniques and also the existing techniques with respect to root-mean-square error metric. More... »

PAGES

6229-6246

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-017-2763-8

DOI

http://dx.doi.org/10.1007/s00500-017-2763-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091379726


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Agartala", 
          "id": "https://www.grid.ac/institutes/grid.444294.b", 
          "name": [
            "National Institute of Technology, Agartala, Tripura, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharya", 
        "givenName": "Diptendu", 
        "id": "sg:person.014357472742.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357472742.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002975791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2013.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004554898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2005.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2005.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005739731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.06.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009786091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90372-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90372-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011187061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012239415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012622945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econmod.2012.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016858382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.06.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020790825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023744295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0255(99)00067-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027265195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2012.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029057262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.03.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030231091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033995430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1560/ijee.52.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034201904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1560/ijee.52.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034201904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035528377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(97)00121-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037011299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.02.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037310168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2004.11.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037668706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90355-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041308000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90355-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041308000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2006.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041802175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.02.098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044375534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2006.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046288283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78297-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046572973", 
          "https://doi.org/10.1007/978-3-540-78297-1_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(95)00220-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046699349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(94)90067-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049913994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(94)90067-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049913994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2010.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050489990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01969720302867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050796821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.09.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051358514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.07.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053065272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.836375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1981.324753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061524723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2014.2308631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.2009457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2010.2059031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2010.2073712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2012.2190399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2012.2207107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2006.890303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2010.2042055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1084726811", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-54597-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084726811", 
          "https://doi.org/10.1007/978-3-319-54597-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csie.2009.827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093842130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103249784", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103249784", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Considerable research outcomes on stock index time-series prediction using classical (type-1) fuzzy sets are available in the literature. However, type-1 fuzzy sets cannot fully capture the uncertainty involved in prediction because of its limited representation capability. This paper fills the void. Here, we propose four chronologically improved methods of time-series prediction using interval type-2 fuzzy sets. The first method is concerned with prediction of the (main factor) variation time-series using interval type-2 fuzzy reasoning. The second method considers secondary factor variation as an additional condition in the antecedent of the rules used for prediction. Another important aspect of the first and the second methods is non-uniform partitioning of the dynamic range of the time-series using evolutionary algorithm, so as to ensure that each partition includes at least one data point. The third method considers uniform partitioning without imposing any restriction on the number of data points in a partition. The partitions are here modeled by type-1 fuzzy sets, if there exists a single block of contiguous data, and by interval type-2 fuzzy sets, if there exists two or more blocks of contiguous data in a partition. The fourth method keeps provision for tuning of membership functions using recent data from the given time-series to influence the prediction results with the current trends. Experiments undertaken confirm that the fourth technique outperforms the first three techniques and also the existing techniques with respect to root-mean-square error metric.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-017-2763-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "18", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Self-adaptive type-1/type-2 hybrid fuzzy reasoning techniques for two-factored stock index time-series prediction", 
    "pagination": "6229-6246", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b76d2acbb58f4439083898fd38c3642fc687ee7a3794343e2b7f60628879e830"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-017-2763-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091379726"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-017-2763-8", 
      "https://app.dimensions.ai/details/publication/pub.1091379726"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00500-017-2763-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-017-2763-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-017-2763-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-017-2763-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-017-2763-8'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-017-2763-8 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author Naf23a59f6d694adc852158829aeef8df
4 schema:citation sg:pub.10.1007/978-3-319-54597-4
5 sg:pub.10.1007/978-3-540-78297-1_1
6 sg:pub.10.1023/a:1008202821328
7 https://app.dimensions.ai/details/publication/pub.1084726811
8 https://app.dimensions.ai/details/publication/pub.1103249784
9 https://doi.org/10.1016/0165-0114(93)90355-l
10 https://doi.org/10.1016/0165-0114(93)90372-o
11 https://doi.org/10.1016/0165-0114(94)90067-1
12 https://doi.org/10.1016/0165-0114(95)00220-0
13 https://doi.org/10.1016/j.asoc.2015.06.028
14 https://doi.org/10.1016/j.econmod.2012.11.035
15 https://doi.org/10.1016/j.engappai.2012.05.023
16 https://doi.org/10.1016/j.eswa.2006.05.015
17 https://doi.org/10.1016/j.eswa.2006.12.021
18 https://doi.org/10.1016/j.eswa.2007.05.016
19 https://doi.org/10.1016/j.eswa.2008.07.043
20 https://doi.org/10.1016/j.eswa.2009.10.013
21 https://doi.org/10.1016/j.eswa.2010.03.063
22 https://doi.org/10.1016/j.eswa.2010.09.046
23 https://doi.org/10.1016/j.eswa.2010.10.049
24 https://doi.org/10.1016/j.eswa.2011.02.098
25 https://doi.org/10.1016/j.eswa.2011.06.019
26 https://doi.org/10.1016/j.future.2013.09.025
27 https://doi.org/10.1016/j.ins.2010.08.026
28 https://doi.org/10.1016/j.ins.2013.06.005
29 https://doi.org/10.1016/j.jhydrol.2010.05.040
30 https://doi.org/10.1016/j.knosys.2014.07.004
31 https://doi.org/10.1016/j.knosys.2014.11.003
32 https://doi.org/10.1016/j.neucom.2014.09.018
33 https://doi.org/10.1016/j.neucom.2015.06.073
34 https://doi.org/10.1016/j.physa.2004.11.070
35 https://doi.org/10.1016/j.physa.2005.08.014
36 https://doi.org/10.1016/j.physa.2007.02.084
37 https://doi.org/10.1016/j.physa.2007.10.004
38 https://doi.org/10.1016/s0019-9958(65)90241-x
39 https://doi.org/10.1016/s0020-0255(99)00067-5
40 https://doi.org/10.1016/s0165-0114(97)00121-8
41 https://doi.org/10.1080/01969720302867
42 https://doi.org/10.1109/3477.836375
43 https://doi.org/10.1109/csie.2009.827
44 https://doi.org/10.1109/tbme.1981.324753
45 https://doi.org/10.1109/tcyb.2014.2308631
46 https://doi.org/10.1109/tevc.2008.2009457
47 https://doi.org/10.1109/tevc.2010.2059031
48 https://doi.org/10.1109/tfuzz.2010.2073712
49 https://doi.org/10.1109/tsmca.2012.2190399
50 https://doi.org/10.1109/tsmca.2012.2207107
51 https://doi.org/10.1109/tsmcb.2006.890303
52 https://doi.org/10.1109/tsmcb.2010.2042055
53 https://doi.org/10.1560/ijee.52.1.1
54 schema:datePublished 2018-09
55 schema:datePublishedReg 2018-09-01
56 schema:description Considerable research outcomes on stock index time-series prediction using classical (type-1) fuzzy sets are available in the literature. However, type-1 fuzzy sets cannot fully capture the uncertainty involved in prediction because of its limited representation capability. This paper fills the void. Here, we propose four chronologically improved methods of time-series prediction using interval type-2 fuzzy sets. The first method is concerned with prediction of the (main factor) variation time-series using interval type-2 fuzzy reasoning. The second method considers secondary factor variation as an additional condition in the antecedent of the rules used for prediction. Another important aspect of the first and the second methods is non-uniform partitioning of the dynamic range of the time-series using evolutionary algorithm, so as to ensure that each partition includes at least one data point. The third method considers uniform partitioning without imposing any restriction on the number of data points in a partition. The partitions are here modeled by type-1 fuzzy sets, if there exists a single block of contiguous data, and by interval type-2 fuzzy sets, if there exists two or more blocks of contiguous data in a partition. The fourth method keeps provision for tuning of membership functions using recent data from the given time-series to influence the prediction results with the current trends. Experiments undertaken confirm that the fourth technique outperforms the first three techniques and also the existing techniques with respect to root-mean-square error metric.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N72db5100591c4861bef374989bf08b86
61 Nd59865d9e327450ca30411e16db417b5
62 sg:journal.1050238
63 schema:name Self-adaptive type-1/type-2 hybrid fuzzy reasoning techniques for two-factored stock index time-series prediction
64 schema:pagination 6229-6246
65 schema:productId N0eae054f17284f42a3a12759b3653f44
66 Nf272635306a04ee0afbaa1361edd917d
67 Nfa7aad0ae1c94fc29cf011b02914dcbe
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091379726
69 https://doi.org/10.1007/s00500-017-2763-8
70 schema:sdDatePublished 2019-04-11T00:30
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na9618dede8af4ad3bb18f821beeed0dd
73 schema:url http://link.springer.com/10.1007/s00500-017-2763-8
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0eae054f17284f42a3a12759b3653f44 schema:name doi
78 schema:value 10.1007/s00500-017-2763-8
79 rdf:type schema:PropertyValue
80 N2e4553dd40d94178b5f608916d9f868b rdf:first sg:person.01337053064.29
81 rdf:rest rdf:nil
82 N72db5100591c4861bef374989bf08b86 schema:volumeNumber 22
83 rdf:type schema:PublicationVolume
84 Na9618dede8af4ad3bb18f821beeed0dd schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Naf23a59f6d694adc852158829aeef8df rdf:first sg:person.014357472742.32
87 rdf:rest N2e4553dd40d94178b5f608916d9f868b
88 Nd59865d9e327450ca30411e16db417b5 schema:issueNumber 18
89 rdf:type schema:PublicationIssue
90 Nf272635306a04ee0afbaa1361edd917d schema:name dimensions_id
91 schema:value pub.1091379726
92 rdf:type schema:PropertyValue
93 Nfa7aad0ae1c94fc29cf011b02914dcbe schema:name readcube_id
94 schema:value b76d2acbb58f4439083898fd38c3642fc687ee7a3794343e2b7f60628879e830
95 rdf:type schema:PropertyValue
96 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
97 schema:name Economics
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
100 schema:name Econometrics
101 rdf:type schema:DefinedTerm
102 sg:journal.1050238 schema:issn 1432-7643
103 1433-7479
104 schema:name Soft Computing
105 rdf:type schema:Periodical
106 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
107 schema:familyName Konar
108 schema:givenName Amit
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
110 rdf:type schema:Person
111 sg:person.014357472742.32 schema:affiliation https://www.grid.ac/institutes/grid.444294.b
112 schema:familyName Bhattacharya
113 schema:givenName Diptendu
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357472742.32
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-319-54597-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084726811
117 https://doi.org/10.1007/978-3-319-54597-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-540-78297-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046572973
120 https://doi.org/10.1007/978-3-540-78297-1_1
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
123 https://doi.org/10.1023/a:1008202821328
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1084726811 schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1103249784 schema:CreativeWork
127 https://doi.org/10.1016/0165-0114(93)90355-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1041308000
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0165-0114(93)90372-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1010131604
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0165-0114(94)90067-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049913994
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0165-0114(95)00220-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046699349
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.asoc.2015.06.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947651
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.econmod.2012.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016858382
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.engappai.2012.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029057262
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.eswa.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046288283
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.eswa.2006.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041802175
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.eswa.2007.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020790825
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.eswa.2008.07.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053065272
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.eswa.2009.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023744295
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.eswa.2010.03.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030231091
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.eswa.2010.09.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051358514
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.eswa.2010.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002975791
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.eswa.2011.02.098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044375534
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.eswa.2011.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035528377
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.future.2013.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004554898
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ins.2010.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050489990
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ins.2013.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011187061
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jhydrol.2010.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012239415
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.knosys.2014.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005739731
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.knosys.2014.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012622945
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.neucom.2014.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033995430
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neucom.2015.06.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069742
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.physa.2004.11.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037668706
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physa.2005.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784223
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.physa.2007.02.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037310168
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.physa.2007.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009786091
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0020-0255(99)00067-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027265195
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0165-0114(97)00121-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037011299
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/01969720302867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050796821
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/3477.836375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158426
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/csie.2009.827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093842130
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tbme.1981.324753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061524723
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/tcyb.2014.2308631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579643
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/tevc.2008.2009457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604849
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tevc.2010.2059031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605002
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tfuzz.2010.2073712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606397
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tsmca.2012.2190399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795879
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tsmca.2012.2207107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795928
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tsmcb.2006.890303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796725
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tsmcb.2010.2042055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797208
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1560/ijee.52.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034201904
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
218 schema:name Jadavpur University, Kolkata, India
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.444294.b schema:alternateName National Institute of Technology Agartala
221 schema:name National Institute of Technology, Agartala, Tripura, India
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...