A framework for improving error detection and correction in spoken dialog systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

David Griol, José Manuel Molina

ABSTRACT

Despite the recent improvements in performance and reliably of the different components of dialog systems, it is still crucial to devise strategies to avoid error propagation from one another. In this paper, we contribute a framework for improved error detection and correction in spoken conversational interfaces. The framework combines user behavior and error modeling to estimate the probability of the presence of errors in the user utterance. This estimation is forwarded to the dialog manager and used to compute whether it is necessary to correct possible errors. We have designed an strategy differentiating between the main misunderstanding and non-understanding scenarios, so that the dialog manager can provide an acceptable tailored response when entering the error correction state. As a proof of concept, we have applied our proposal to a customer support dialog system. Our results show the appropriateness of our technique to correctly detect and react to errors, enhancing the system performance and user satisfaction. More... »

PAGES

4229-4241

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-016-2290-z

DOI

http://dx.doi.org/10.1007/s00500-016-2290-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008730107


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Group of Applied Artificial Intelligence (GIAA), Computer Science Department, Carlos III University of Madrid, Avda. de la Universidad, 30, 28911, Legan\u00e9s, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griol", 
        "givenName": "David", 
        "id": "sg:person.013422741257.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422741257.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Group of Applied Artificial Intelligence (GIAA), Computer Science Department, Carlos III University of Madrid, Avda. de la Universidad, 30, 28911, Legan\u00e9s, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molina", 
        "givenName": "Jos\u00e9 Manuel", 
        "id": "sg:person.010563353054.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.specom.2004.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001766360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2013.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002867806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2005.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008092122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2005.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008092122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2004.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008875619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2009.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009327524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839514.2013.835230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010369686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0269888906000944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011556404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2013.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012901042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1014890210", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-32967-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014890210", 
          "https://doi.org/10.1007/978-3-319-32967-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-32967-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014890210", 
          "https://doi.org/10.1007/978-3-319-32967-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-32967-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014890210", 
          "https://doi.org/10.1007/978-3-319-32967-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2004.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015396624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2010.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015415339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2014.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026204164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-6494.1992.tb00970.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030434704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032994497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2004.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037364242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1351324913000375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038453422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2004.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040860776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2010.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047723364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6393(94)90073-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048622477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6393(94)90073-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048622477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2008.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049082686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2015.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052606063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/89.817450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061242562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2012.2225812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada459168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091750850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/slt.2010.5700894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093423432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asru.2003.1318504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095131176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asru.1997.658991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095708764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1614108.1614146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099151066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107023083", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118706664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107023083"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "Despite the recent improvements in performance and reliably of the different components of dialog systems, it is still crucial to devise strategies to avoid error propagation from one another. In this paper, we contribute a framework for improved error detection and correction in spoken conversational interfaces. The framework combines user behavior and error modeling to estimate the probability of the presence of errors in the user utterance. This estimation is forwarded to the dialog manager and used to compute whether it is necessary to correct possible errors. We have designed an strategy differentiating between the main misunderstanding and non-understanding scenarios, so that the dialog manager can provide an acceptable tailored response when entering the error correction state. As a proof of concept, we have applied our proposal to a customer support dialog system. Our results show the appropriateness of our technique to correctly detect and react to errors, enhancing the system performance and user satisfaction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-016-2290-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A framework for improving error detection and correction in spoken dialog systems", 
    "pagination": "4229-4241", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2997e770782f7dd8c6472085944e78c34eca2c55b8cc86cf97d9719e318d4bd7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-016-2290-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008730107"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-016-2290-z", 
      "https://app.dimensions.ai/details/publication/pub.1008730107"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-016-2290-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2290-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2290-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2290-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2290-z'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-016-2290-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9e67cfef6d5f4e1687b1a2ad03f4755c
4 schema:citation sg:pub.10.1007/978-3-319-32967-3
5 https://app.dimensions.ai/details/publication/pub.1014890210
6 https://app.dimensions.ai/details/publication/pub.1107023083
7 https://doi.org/10.1002/9781118706664
8 https://doi.org/10.1016/0167-6393(94)90073-6
9 https://doi.org/10.1016/j.csl.2004.06.001
10 https://doi.org/10.1016/j.csl.2004.10.002
11 https://doi.org/10.1016/j.csl.2005.07.005
12 https://doi.org/10.1016/j.csl.2009.08.003
13 https://doi.org/10.1016/j.csl.2013.09.002
14 https://doi.org/10.1016/j.knosys.2010.03.004
15 https://doi.org/10.1016/j.procs.2014.11.019
16 https://doi.org/10.1016/j.specom.2004.09.009
17 https://doi.org/10.1016/j.specom.2004.10.018
18 https://doi.org/10.1016/j.specom.2004.11.005
19 https://doi.org/10.1016/j.specom.2008.03.010
20 https://doi.org/10.1016/j.specom.2010.06.004
21 https://doi.org/10.1016/j.specom.2012.06.006
22 https://doi.org/10.1016/j.specom.2013.04.005
23 https://doi.org/10.1016/j.specom.2015.06.003
24 https://doi.org/10.1017/s0269888906000944
25 https://doi.org/10.1017/s1351324913000375
26 https://doi.org/10.1080/08839514.2013.835230
27 https://doi.org/10.1109/89.817450
28 https://doi.org/10.1109/asru.1997.658991
29 https://doi.org/10.1109/asru.2003.1318504
30 https://doi.org/10.1109/jproc.2012.2225812
31 https://doi.org/10.1109/slt.2010.5700894
32 https://doi.org/10.1111/j.1467-6494.1992.tb00970.x
33 https://doi.org/10.21236/ada459168
34 https://doi.org/10.3115/1614108.1614146
35 schema:datePublished 2016-11
36 schema:datePublishedReg 2016-11-01
37 schema:description Despite the recent improvements in performance and reliably of the different components of dialog systems, it is still crucial to devise strategies to avoid error propagation from one another. In this paper, we contribute a framework for improved error detection and correction in spoken conversational interfaces. The framework combines user behavior and error modeling to estimate the probability of the presence of errors in the user utterance. This estimation is forwarded to the dialog manager and used to compute whether it is necessary to correct possible errors. We have designed an strategy differentiating between the main misunderstanding and non-understanding scenarios, so that the dialog manager can provide an acceptable tailored response when entering the error correction state. As a proof of concept, we have applied our proposal to a customer support dialog system. Our results show the appropriateness of our technique to correctly detect and react to errors, enhancing the system performance and user satisfaction.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N091799c47d244c098ebf097b48a6dae8
42 N121994f2ace647599706be7eecbf8511
43 sg:journal.1050238
44 schema:name A framework for improving error detection and correction in spoken dialog systems
45 schema:pagination 4229-4241
46 schema:productId N2cd9eab7577041a486a090325bd69593
47 N99861ab5373d422396caadad7c19e4dc
48 Nc18ca453a95540af9a17bf034b368284
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008730107
50 https://doi.org/10.1007/s00500-016-2290-z
51 schema:sdDatePublished 2019-04-11T12:23
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nabf69fc0c7f04794b5c076d4977e56d8
54 schema:url https://link.springer.com/10.1007%2Fs00500-016-2290-z
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N091799c47d244c098ebf097b48a6dae8 schema:volumeNumber 20
59 rdf:type schema:PublicationVolume
60 N121994f2ace647599706be7eecbf8511 schema:issueNumber 11
61 rdf:type schema:PublicationIssue
62 N2cd9eab7577041a486a090325bd69593 schema:name dimensions_id
63 schema:value pub.1008730107
64 rdf:type schema:PropertyValue
65 N99861ab5373d422396caadad7c19e4dc schema:name doi
66 schema:value 10.1007/s00500-016-2290-z
67 rdf:type schema:PropertyValue
68 N9e67cfef6d5f4e1687b1a2ad03f4755c rdf:first sg:person.013422741257.57
69 rdf:rest Na7f71008aa32401c91de732a327569fb
70 Na7f71008aa32401c91de732a327569fb rdf:first sg:person.010563353054.10
71 rdf:rest rdf:nil
72 Nabf69fc0c7f04794b5c076d4977e56d8 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nc18ca453a95540af9a17bf034b368284 schema:name readcube_id
75 schema:value 2997e770782f7dd8c6472085944e78c34eca2c55b8cc86cf97d9719e318d4bd7
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1050238 schema:issn 1432-7643
84 1433-7479
85 schema:name Soft Computing
86 rdf:type schema:Periodical
87 sg:person.010563353054.10 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
88 schema:familyName Molina
89 schema:givenName José Manuel
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10
91 rdf:type schema:Person
92 sg:person.013422741257.57 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
93 schema:familyName Griol
94 schema:givenName David
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422741257.57
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-319-32967-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014890210
98 https://doi.org/10.1007/978-3-319-32967-3
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1014890210 schema:CreativeWork
101 https://app.dimensions.ai/details/publication/pub.1107023083 schema:CreativeWork
102 https://doi.org/10.1002/9781118706664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107023083
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0167-6393(94)90073-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048622477
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.csl.2004.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040860776
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.csl.2004.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015396624
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.csl.2005.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008092122
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.csl.2009.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009327524
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.csl.2013.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002867806
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.knosys.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415339
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.procs.2014.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026204164
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.specom.2004.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037364242
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.specom.2004.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008875619
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.specom.2004.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001766360
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.specom.2008.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049082686
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.specom.2010.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047723364
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.specom.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032994497
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.specom.2013.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012901042
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.specom.2015.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052606063
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s0269888906000944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011556404
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1017/s1351324913000375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038453422
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/08839514.2013.835230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010369686
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/89.817450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061242562
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/asru.1997.658991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095708764
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/asru.2003.1318504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095131176
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/jproc.2012.2225812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297724
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/slt.2010.5700894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093423432
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.1467-6494.1992.tb00970.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030434704
153 rdf:type schema:CreativeWork
154 https://doi.org/10.21236/ada459168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091750850
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3115/1614108.1614146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099151066
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
159 schema:name Group of Applied Artificial Intelligence (GIAA), Computer Science Department, Carlos III University of Madrid, Avda. de la Universidad, 30, 28911, Leganés, Spain
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...