Comparison of metamodeling techniques in evolutionary algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Alan Díaz-Manríquez, Gregorio Toscano, Carlos A. Coello Coello

ABSTRACT

Although researchers have successfully incorporated metamodels in evolutionary algorithms to solve computational-expensive optimization problems, they have scarcely performed comparisons among different metamodeling techniques. This paper presents an in-depth comparison study over four of the most popular metamodeling techniques: polynomial response surface, Kriging, radial basis function neural network (RBF), and support vector regression. We adopted six well-known scalable test functions and performed experiments to evaluate their suitability to be coupled with an evolutionary algorithm and the appropriateness to surrogate problems by regions (instead of surrogating the entire problem). Notwithstanding that most researchers have undertaken accuracy as the main measure to discern among metamodels, this paper shows that the precision, measured with the ranking preservation indicator, gives a more valuable information for selecting purposes. Additionally, nonetheless each model has its own peculiarities; our results concur that RBF fulfills most of our interests. Furthermore, the readers can also benefit from this study if their problem at hand has certain characteristics such as a low budget of computational time or a low-dimension problem since they can assess specific results of our experimentation. More... »

PAGES

5647-5663

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-016-2140-z

DOI

http://dx.doi.org/10.1007/s00500-016-2140-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007714462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Autonomous University of Tamaulipas", 
          "id": "https://www.grid.ac/institutes/grid.441241.6", 
          "name": [
            "Facultad de Ingenier\u00eda y Ciencias, Centro Universitario Victoria, Universidad Aut\u00f3noma de Tamaulipas, 87000, Cd. Victoria, Tamaulipas, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00edaz-Manr\u00edquez", 
        "givenName": "Alan", 
        "id": "sg:person.013016777531.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013016777531.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "CINVESTAV-IPN, Unidad Tamaulipas, Parque Cient\u00edfico y Tecnol\u00f3gico TECNOTAM, Km. 5.5 carretera Cd. Victoria-Soto La Marina, 87130, Cd. Victoria, Tamaulipas, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toscano", 
        "givenName": "Gregorio", 
        "id": "sg:person.013502036601.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502036601.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Departamento de Computaci\u00f3n, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello Coello", 
        "givenName": "Carlos A.", 
        "id": "sg:person.012160505340.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0376-0421(01)00002-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010312074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1998-4755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013154861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-001-0160-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016445581", 
          "https://doi.org/10.1007/s00158-001-0160-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-001-0160-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016445581", 
          "https://doi.org/10.1007/s00158-001-0160-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1998-4758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029427919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033110866", 
          "https://doi.org/10.1007/bf01743353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033110866", 
          "https://doi.org/10.1007/bf01743353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88051-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034435937", 
          "https://doi.org/10.1007/978-3-540-88051-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88051-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034435937", 
          "https://doi.org/10.1007/978-3-540-88051-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/167293.167352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034914034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12775-5_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038371076", 
          "https://doi.org/10.1007/978-3-642-12775-5_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12775-5_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038371076", 
          "https://doi.org/10.1007/978-3-642-12775-5_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb076i008p01905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043237648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365601750190398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043473749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76931-6_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051674612", 
          "https://doi.org/10.1007/978-3-540-76931-6_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.06.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052933008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.2003008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2010.2040180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177012413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gsecongeo.58.8.1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068929315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1268522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069420824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/9781439822463.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090127273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2003.1299639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093313948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2013.6557743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094473532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2011.5949881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095265468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511618994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741545"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "Although researchers have successfully incorporated metamodels in evolutionary algorithms to solve computational-expensive optimization problems, they have scarcely performed comparisons among different metamodeling techniques. This paper presents an in-depth comparison study over four of the most popular metamodeling techniques: polynomial response surface, Kriging, radial basis function neural network (RBF), and support vector regression. We adopted six well-known scalable test functions and performed experiments to evaluate their suitability to be coupled with an evolutionary algorithm and the appropriateness to surrogate problems by regions (instead of surrogating the entire problem). Notwithstanding that most researchers have undertaken accuracy as the main measure to discern among metamodels, this paper shows that the precision, measured with the ranking preservation indicator, gives a more valuable information for selecting purposes. Additionally, nonetheless each model has its own peculiarities; our results concur that RBF fulfills most of our interests. Furthermore, the readers can also benefit from this study if their problem at hand has certain characteristics such as a low budget of computational time or a low-dimension problem since they can assess specific results of our experimentation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-016-2140-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "19", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Comparison of metamodeling techniques in evolutionary algorithms", 
    "pagination": "5647-5663", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "24bf19c4bb3f4d287740f46994b06340ff4b0f3100a34bd63f3ef09e5e9cf182"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-016-2140-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007714462"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-016-2140-z", 
      "https://app.dimensions.ai/details/publication/pub.1007714462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00500-016-2140-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2140-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2140-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2140-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2140-z'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-016-2140-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6c7b2aaee293465cbe4ae97267d757fb
4 schema:citation sg:pub.10.1007/978-3-540-76931-6_23
5 sg:pub.10.1007/978-3-540-88051-6_8
6 sg:pub.10.1007/978-3-642-12775-5_7
7 sg:pub.10.1007/bf01743353
8 sg:pub.10.1007/s00158-001-0160-4
9 sg:pub.10.1023/a:1008202821328
10 https://doi.org/10.1016/j.neucom.2012.06.043
11 https://doi.org/10.1016/s0376-0421(01)00002-1
12 https://doi.org/10.1017/cbo9780511618994
13 https://doi.org/10.1029/jb076i008p01905
14 https://doi.org/10.1109/cec.2003.1299639
15 https://doi.org/10.1109/cec.2011.5949881
16 https://doi.org/10.1109/cec.2013.6557743
17 https://doi.org/10.1109/tevc.2008.2003008
18 https://doi.org/10.1109/tevc.2010.2040180
19 https://doi.org/10.1145/167293.167352
20 https://doi.org/10.1162/106365601750190398
21 https://doi.org/10.1214/ss/1177012413
22 https://doi.org/10.2113/gsecongeo.58.8.1246
23 https://doi.org/10.2307/1268522
24 https://doi.org/10.2514/6.1998-4755
25 https://doi.org/10.2514/6.1998-4758
26 https://doi.org/10.3109/9781439822463.187
27 schema:datePublished 2017-10
28 schema:datePublishedReg 2017-10-01
29 schema:description Although researchers have successfully incorporated metamodels in evolutionary algorithms to solve computational-expensive optimization problems, they have scarcely performed comparisons among different metamodeling techniques. This paper presents an in-depth comparison study over four of the most popular metamodeling techniques: polynomial response surface, Kriging, radial basis function neural network (RBF), and support vector regression. We adopted six well-known scalable test functions and performed experiments to evaluate their suitability to be coupled with an evolutionary algorithm and the appropriateness to surrogate problems by regions (instead of surrogating the entire problem). Notwithstanding that most researchers have undertaken accuracy as the main measure to discern among metamodels, this paper shows that the precision, measured with the ranking preservation indicator, gives a more valuable information for selecting purposes. Additionally, nonetheless each model has its own peculiarities; our results concur that RBF fulfills most of our interests. Furthermore, the readers can also benefit from this study if their problem at hand has certain characteristics such as a low budget of computational time or a low-dimension problem since they can assess specific results of our experimentation.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N56174512386c407698f9b6011ef796d3
34 N5a3e66637e5545cdb633c7f39550f8db
35 sg:journal.1050238
36 schema:name Comparison of metamodeling techniques in evolutionary algorithms
37 schema:pagination 5647-5663
38 schema:productId N05fe0a789d6446b5a192d3757a13803a
39 N492e11abe87346f3be6abc00f2ebc047
40 N547b5b3a1ebf4c6f9ed65da45c2e7f50
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007714462
42 https://doi.org/10.1007/s00500-016-2140-z
43 schema:sdDatePublished 2019-04-11T12:25
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N086ebf0c63204a00a3210e63d77cccd7
46 schema:url https://link.springer.com/10.1007%2Fs00500-016-2140-z
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N05fe0a789d6446b5a192d3757a13803a schema:name dimensions_id
51 schema:value pub.1007714462
52 rdf:type schema:PropertyValue
53 N086ebf0c63204a00a3210e63d77cccd7 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N492e11abe87346f3be6abc00f2ebc047 schema:name doi
56 schema:value 10.1007/s00500-016-2140-z
57 rdf:type schema:PropertyValue
58 N547b5b3a1ebf4c6f9ed65da45c2e7f50 schema:name readcube_id
59 schema:value 24bf19c4bb3f4d287740f46994b06340ff4b0f3100a34bd63f3ef09e5e9cf182
60 rdf:type schema:PropertyValue
61 N55f444607b50488d83bcae8767930580 rdf:first sg:person.012160505340.13
62 rdf:rest rdf:nil
63 N56174512386c407698f9b6011ef796d3 schema:volumeNumber 21
64 rdf:type schema:PublicationVolume
65 N5a3e66637e5545cdb633c7f39550f8db schema:issueNumber 19
66 rdf:type schema:PublicationIssue
67 N6c7b2aaee293465cbe4ae97267d757fb rdf:first sg:person.013016777531.39
68 rdf:rest N927a7ee63b0744a0ab998c4990563b33
69 N927a7ee63b0744a0ab998c4990563b33 rdf:first sg:person.013502036601.47
70 rdf:rest N55f444607b50488d83bcae8767930580
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1050238 schema:issn 1432-7643
78 1433-7479
79 schema:name Soft Computing
80 rdf:type schema:Periodical
81 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
82 schema:familyName Coello Coello
83 schema:givenName Carlos A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
85 rdf:type schema:Person
86 sg:person.013016777531.39 schema:affiliation https://www.grid.ac/institutes/grid.441241.6
87 schema:familyName Díaz-Manríquez
88 schema:givenName Alan
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013016777531.39
90 rdf:type schema:Person
91 sg:person.013502036601.47 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
92 schema:familyName Toscano
93 schema:givenName Gregorio
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502036601.47
95 rdf:type schema:Person
96 sg:pub.10.1007/978-3-540-76931-6_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051674612
97 https://doi.org/10.1007/978-3-540-76931-6_23
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-540-88051-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034435937
100 https://doi.org/10.1007/978-3-540-88051-6_8
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-3-642-12775-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038371076
103 https://doi.org/10.1007/978-3-642-12775-5_7
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01743353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033110866
106 https://doi.org/10.1007/bf01743353
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00158-001-0160-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016445581
109 https://doi.org/10.1007/s00158-001-0160-4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
112 https://doi.org/10.1023/a:1008202821328
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.neucom.2012.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052933008
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0376-0421(01)00002-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010312074
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/cbo9780511618994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741545
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1029/jb076i008p01905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043237648
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/cec.2003.1299639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093313948
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/cec.2011.5949881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095265468
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/cec.2013.6557743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094473532
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tevc.2008.2003008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604836
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tevc.2010.2040180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604966
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1145/167293.167352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034914034
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1162/106365601750190398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043473749
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1214/ss/1177012413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409909
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2113/gsecongeo.58.8.1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068929315
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2307/1268522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069420824
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2514/6.1998-4755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013154861
143 rdf:type schema:CreativeWork
144 https://doi.org/10.2514/6.1998-4758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029427919
145 rdf:type schema:CreativeWork
146 https://doi.org/10.3109/9781439822463.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090127273
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
149 schema:name CINVESTAV-IPN, Unidad Tamaulipas, Parque Científico y Tecnológico TECNOTAM, Km. 5.5 carretera Cd. Victoria-Soto La Marina, 87130, Cd. Victoria, Tamaulipas, Mexico
150 Departamento de Computación, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360, Mexico, DF, Mexico
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.441241.6 schema:alternateName Autonomous University of Tamaulipas
153 schema:name Facultad de Ingeniería y Ciencias, Centro Universitario Victoria, Universidad Autónoma de Tamaulipas, 87000, Cd. Victoria, Tamaulipas, Mexico
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...