Chain-reaction solution update in MOEA/D and its effects on multi- and many-objective optimization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03-05

AUTHORS

Hiroyuki Sato

ABSTRACT

MOEA/D is one of the promising evolutionary algorithms for multi- and many-objective optimization. To improve the search performance of MOEA/D, this work focuses on the solution update method in the conventional MOEA/D and proposes its alternative, the chain-reaction solution update. The proposed method is designed to maintain and improve the variable (genetic) diversity in the population by avoiding duplication of solutions in the population. In addition, the proposed method determines the order of existing solutions to be updated depending on the location of each offspring in the objective space. Furthermore, when an existing solution in the population is replaced by a new offspring, the proposed method tries to reutilize the existing solution for other search directions by recursively performing the proposed chain-reaction update procedure. This work uses discrete knapsack and continuous WFG4 problems with 2–8 objectives. Experimental results using knapsack problems show the proposed chain-reaction update contributes to improving the search performance of MOEA/D by enhancing the diversity of solutions in the objective space. In addition, experimental results using WFG4 problems show that the search performance of MOEA/D can be further improved using the proposed method. More... »

PAGES

3803-3820

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-016-2092-3

DOI

http://dx.doi.org/10.1007/s00500-016-2092-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034580593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-44719-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037295160", 
          "https://doi.org/10.1007/3-540-44719-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-87563-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391184", 
          "https://doi.org/10.1007/978-3-642-87563-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30217-9_84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006836276", 
          "https://doi.org/10.1007/978-3-540-30217-9_84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-13563-2_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016612283", 
          "https://doi.org/10.1007/978-3-319-13563-2_24"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03-05", 
    "datePublishedReg": "2016-03-05", 
    "description": "MOEA/D is one of the promising evolutionary algorithms for multi- and many-objective optimization. To improve the search performance of MOEA/D, this work focuses on the solution update method in the conventional MOEA/D and proposes its alternative, the chain-reaction solution update. The proposed method is designed to maintain and improve the variable (genetic) diversity in the population by avoiding duplication of solutions in the population. In addition, the proposed method determines the order of existing solutions to be updated depending on the location of each offspring in the objective space. Furthermore, when an existing solution in the population is replaced by a new offspring, the proposed method tries to reutilize the existing solution for other search directions by recursively performing the proposed chain-reaction update procedure. This work uses discrete knapsack and continuous WFG4 problems with 2\u20138 objectives. Experimental results using knapsack problems show the proposed chain-reaction update contributes to improving the search performance of MOEA/D by enhancing the diversity of solutions in the objective space. In addition, experimental results using WFG4 problems show that the search performance of MOEA/D can be further improved using the proposed method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00500-016-2092-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6155136", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "MOEA/D", 
      "objective space", 
      "solution update", 
      "objective optimization", 
      "conventional MOEA/D", 
      "solution update method", 
      "diversity of solutions", 
      "promising evolutionary algorithm", 
      "search direction", 
      "evolutionary algorithm", 
      "knapsack problem", 
      "search performance", 
      "update procedure", 
      "update method", 
      "experimental results", 
      "optimization", 
      "solution", 
      "new offspring", 
      "problem", 
      "space", 
      "knapsack", 
      "algorithm", 
      "performance", 
      "Multi", 
      "work", 
      "results", 
      "direction", 
      "order", 
      "update", 
      "procedure", 
      "variable diversity", 
      "objective", 
      "addition", 
      "location", 
      "alternative", 
      "effect", 
      "population", 
      "diversity", 
      "duplication", 
      "offspring", 
      "method"
    ], 
    "name": "Chain-reaction solution update in MOEA/D and its effects on multi- and many-objective optimization", 
    "pagination": "3803-3820", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034580593"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-016-2092-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-016-2092-3", 
      "https://app.dimensions.ai/details/publication/pub.1034580593"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_701.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00500-016-2092-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2092-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2092-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2092-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-016-2092-3'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      22 PREDICATES      70 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-016-2092-3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nb1092e8d1f194119a0df2629fd826935
4 schema:citation sg:pub.10.1007/3-540-44719-9_6
5 sg:pub.10.1007/978-3-319-13563-2_24
6 sg:pub.10.1007/978-3-540-30217-9_84
7 sg:pub.10.1007/978-3-642-87563-2_5
8 schema:datePublished 2016-03-05
9 schema:datePublishedReg 2016-03-05
10 schema:description MOEA/D is one of the promising evolutionary algorithms for multi- and many-objective optimization. To improve the search performance of MOEA/D, this work focuses on the solution update method in the conventional MOEA/D and proposes its alternative, the chain-reaction solution update. The proposed method is designed to maintain and improve the variable (genetic) diversity in the population by avoiding duplication of solutions in the population. In addition, the proposed method determines the order of existing solutions to be updated depending on the location of each offspring in the objective space. Furthermore, when an existing solution in the population is replaced by a new offspring, the proposed method tries to reutilize the existing solution for other search directions by recursively performing the proposed chain-reaction update procedure. This work uses discrete knapsack and continuous WFG4 problems with 2–8 objectives. Experimental results using knapsack problems show the proposed chain-reaction update contributes to improving the search performance of MOEA/D by enhancing the diversity of solutions in the objective space. In addition, experimental results using WFG4 problems show that the search performance of MOEA/D can be further improved using the proposed method.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nb6d84e40cd6d49528d65942212407dc4
15 Ncd4be59425f74332b42bf9c1e7cf465e
16 sg:journal.1050238
17 schema:keywords MOEA/D
18 Multi
19 addition
20 algorithm
21 alternative
22 conventional MOEA/D
23 direction
24 diversity
25 diversity of solutions
26 duplication
27 effect
28 evolutionary algorithm
29 experimental results
30 knapsack
31 knapsack problem
32 location
33 method
34 new offspring
35 objective
36 objective optimization
37 objective space
38 offspring
39 optimization
40 order
41 performance
42 population
43 problem
44 procedure
45 promising evolutionary algorithm
46 results
47 search direction
48 search performance
49 solution
50 solution update
51 solution update method
52 space
53 update
54 update method
55 update procedure
56 variable diversity
57 work
58 schema:name Chain-reaction solution update in MOEA/D and its effects on multi- and many-objective optimization
59 schema:pagination 3803-3820
60 schema:productId N4f4901f113f8439c8d8bb5f7902c17df
61 N71036b7febb940d681501332388eff7f
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034580593
63 https://doi.org/10.1007/s00500-016-2092-3
64 schema:sdDatePublished 2022-05-10T10:16
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nfe7f3e0518034688816c3c54da8e0eb3
67 schema:url https://doi.org/10.1007/s00500-016-2092-3
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N4f4901f113f8439c8d8bb5f7902c17df schema:name dimensions_id
72 schema:value pub.1034580593
73 rdf:type schema:PropertyValue
74 N71036b7febb940d681501332388eff7f schema:name doi
75 schema:value 10.1007/s00500-016-2092-3
76 rdf:type schema:PropertyValue
77 Nb1092e8d1f194119a0df2629fd826935 rdf:first sg:person.07750750604.05
78 rdf:rest rdf:nil
79 Nb6d84e40cd6d49528d65942212407dc4 schema:volumeNumber 20
80 rdf:type schema:PublicationVolume
81 Ncd4be59425f74332b42bf9c1e7cf465e schema:issueNumber 10
82 rdf:type schema:PublicationIssue
83 Nfe7f3e0518034688816c3c54da8e0eb3 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
89 schema:name Numerical and Computational Mathematics
90 rdf:type schema:DefinedTerm
91 sg:grant.6155136 http://pending.schema.org/fundedItem sg:pub.10.1007/s00500-016-2092-3
92 rdf:type schema:MonetaryGrant
93 sg:journal.1050238 schema:issn 1432-7643
94 1433-7479
95 schema:name Soft Computing
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
99 schema:familyName Sato
100 schema:givenName Hiroyuki
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
102 rdf:type schema:Person
103 sg:pub.10.1007/3-540-44719-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037295160
104 https://doi.org/10.1007/3-540-44719-9_6
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-319-13563-2_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016612283
107 https://doi.org/10.1007/978-3-319-13563-2_24
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-540-30217-9_84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006836276
110 https://doi.org/10.1007/978-3-540-30217-9_84
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-642-87563-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029391184
113 https://doi.org/10.1007/978-3-642-87563-2_5
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.266298.1 schema:alternateName Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
116 schema:name Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...