Ontology type: schema:ScholarlyArticle
2015-05-29
AUTHORS ABSTRACTWe give a general definition of weighted tree automata (wta) and define three instances which differ in the underlying weight algebras: semirings, multi-operator monoids, and tree-valuation monoids. Also, we define a general concept of weighted expressions based on monadic second-order logics. In the same way as for wta, we define three instances corresponding to the above-mentioned weight algebras. We prove that wta over semirings are equivalent to weighted expressions over semirings, and prove the same equivalence over tree-valuation monoids. For wta over semirings and for wta over tree-valuation monoids we prove characterizations in terms of bimorphisms. More... »
PAGES1035-1046
http://scigraph.springernature.com/pub.10.1007/s00500-015-1717-2
DOIhttp://dx.doi.org/10.1007/s00500-015-1717-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006617090
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cognitive Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Szeged, \u00c1rp\u00e1d t\u00e9r 2, 6720, Szeged, Hungary",
"id": "http://www.grid.ac/institutes/grid.9008.1",
"name": [
"Department of Computer Science, University of Szeged, \u00c1rp\u00e1d t\u00e9r 2, 6720, Szeged, Hungary"
],
"type": "Organization"
},
"familyName": "F\u00fcl\u00f6p",
"givenName": "Zolt\u00e1n",
"id": "sg:person.014007607055.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007607055.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Computer Science, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany",
"id": "http://www.grid.ac/institutes/grid.4488.0",
"name": [
"Faculty of Computer Science, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany"
],
"type": "Organization"
},
"familyName": "Vogler",
"givenName": "Heiko",
"id": "sg:person.014562633673.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562633673.93"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01691346",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038809008",
"https://doi.org/10.1007/bf01691346"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11523468_42",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003892152",
"https://doi.org/10.1007/11523468_42"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-01492-5_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013273492",
"https://doi.org/10.1007/978-3-642-01492-5_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00224-007-9091-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003330683",
"https://doi.org/10.1007/s00224-007-9091-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-24897-9_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024563312",
"https://doi.org/10.1007/978-3-642-24897-9_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01704020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006876172",
"https://doi.org/10.1007/bf01704020"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00224-010-9296-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051700987",
"https://doi.org/10.1007/s00224-010-9296-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-59126-6_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000867424",
"https://doi.org/10.1007/978-3-642-59126-6_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-01492-5_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009402049",
"https://doi.org/10.1007/978-3-642-01492-5_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00224-009-9224-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045410699",
"https://doi.org/10.1007/s00224-009-9224-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-05-29",
"datePublishedReg": "2015-05-29",
"description": "We give a general definition of weighted tree automata (wta) and define three instances which differ in the underlying weight algebras: semirings, multi-operator monoids, and tree-valuation monoids. Also, we define a general concept of weighted expressions based on monadic second-order logics. In the same way as for wta, we define three instances corresponding to the above-mentioned weight algebras. We prove that wta over semirings are equivalent to weighted expressions over semirings, and prove the same equivalence over tree-valuation monoids. For wta over semirings and for wta over tree-valuation monoids we prove characterizations in terms of bimorphisms.",
"genre": "article",
"id": "sg:pub.10.1007/s00500-015-1717-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1050238",
"issn": [
"1432-7643",
"1433-7479"
],
"name": "Soft Computing",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"keywords": [
"weight algebra",
"monadic second-order logic",
"algebra",
"semirings",
"monoids",
"second-order logic",
"same equivalence",
"general definition",
"weighted expressions",
"general concept",
"equivalence",
"automata",
"instances",
"bimorphisms",
"tree automata",
"same way",
"terms",
"logic",
"tree languages",
"definition",
"concept",
"WTA",
"characterization",
"way",
"expression",
"language"
],
"name": "Characterizations of recognizable weighted tree languages by logic and bimorphisms",
"pagination": "1035-1046",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006617090"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00500-015-1717-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00500-015-1717-2",
"https://app.dimensions.ai/details/publication/pub.1006617090"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:14",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_665.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00500-015-1717-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1717-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1717-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1717-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1717-2'
This table displays all metadata directly associated to this object as RDF triples.
150 TRIPLES
22 PREDICATES
65 URIs
43 LITERALS
6 BLANK NODES